

INtelligent TEchnology for COntrol

 E-mail: inteco@inteco.com.pl

RT-DAC4/PCI

Multi I/O Board
Board version 1.11

User’s Manual
Kraków 2013

INTECO

RT-DAC4/PCI - User’s manual page 1

Table of contents

1. GENERAL INFORMATION .. 3

1.1 INTRODUCTION.. 3
1.2 SPECIFICATION... 3

2. BOARD INSTALLATION... 6

3. DRIVER INSTALLATION ... 6

3.1 INSTALLATION ... 6

4. JUMPER SETTINGS ... 7

4.1 OUTPUT RANGE SELECTION – JP1 .. 7
4.2 DIP SWITCHES FOR FPGA PROGRAMMING... 7

5. CONNECTOR PIN ASSIGNMENTS... 8

6. REGISTER STRUCTURE AND FORMAT .. 9

6.1 BEFORE USING A C API FUNCTIONS... 10
6.2 VERSION MANAGEMENT.. 11
6.3 COUNTER/TIMER .. 13
6.4 DIGITAL I/O ... 14
6.5 PWM... 15
6.6 DIGITAL SIGNAL GENERATORS... 16
6.7 ENCODERS... 17
6.8 A/D CONVERSION.. 18
6.9 D/A CONVERSION.. 19
6.10 INTERRUPTS... 20

7. LOW -LEVEL API FUNCTIONS.. 25

8. XILINX FPGA CHIP PROGRAMMING 27

INTECO

RT-DAC4/PCI - User’s manual page 2

NOTES

MATLAB, Simulink, RTW and RTWT are registered trademarks of The MathWorks, Inc.
Windows NT/2000/XP/7 are registered trademarks of Microsoft Corporation

Copyright INTECO 2002-2013. All rights reserved.
Copyright 2000 PLX Technology, Inc.

INTECO

RT-DAC4/PCI - User’s manual page 3

1. GENERAL INFORMATION

1.1 Introduction
The RT-DAC4/PCI is a multifunction analog and digital timing I/O board dedicated to real-time data

acquisition and control in the Windows 95/98/NT/2000 environment. The board uses a PCI bus and supports
real-time operations without introducing latencies caused by the Windows default timing system. The board
contains a Xilinx FPGA chip that can be reprogrammed to introduce a new functionality of digital
inputs/outputs without any hardware modification.

The default configuration of the FPGA chip accepts signals from incremental encoders and generates PWM
outputs, typical for mechatronic control applications.

1.2 Specification
Analog section

Analog Inputs

Channels: 16 single-ended, multiplexed
Resolution: 12 bit
Input ranges: ±10V, programmable gain (x1, x2, x4, x8, x16)
Conversion time: 1.6µs
Trigger: software, hardware
Reference voltage: on-board

Analog Outputs

Channels: 4
Resolution: 12 bit
Output range: 0V÷+10V, -10V÷0V, ±10V
Settling time: 6µs (to 0.01%)
Reference voltage: on-board

Digital section*

 (version 1.11)

Digital Input/ Output

Channels: 32 bi-directional, direction setting
Direction: bi-directional, direction is individual software

programmable
Input voltage: V IH = 2.0V÷3.6V, VIL = - 0.5V÷0.8V
Output voltage: VOH = 2.4V (min), VOL = 0.4V (max)
Output current: 2mA÷24mA per channel
Standard: LVTTL

Digital Timer/Counter

16 bit counter: 2 channels, counts external signal
32 bit timer: 2 channels, counts internal clock signal

(frequency depends on a current version of the
board)

Digital Signal Generator

Channels: 2
Resolution: 28 bits of the H state; 28-bits of the L state
Max frequency: 20 MHz
Duty cycle Software configurable

INTECO

RT-DAC4/PCI - User’s manual page 4

PWM Outputs
Channels: 4
Resolution: 8/12 bits (software selected)
Base Frequency: programmable, depends on a current version of

the board

Incremental encoders

Channels: 4
Output: 32 bit counter

Interrupts

PCI interrupt: INTA#
Interrupt sources: 2 external inputs, software, timer, arbitrary

change of state
Pulse width
generating COS
interrupt

25ns min.

PCI features
Supports PCI v2.2 compliant
Supports both version of PCI slots (3.3V and 5V) and can work with all computers equipped with PCI buses.

*Digital section with the default FPGA chip configuration

Software support:

The included Testing Software allows initial tests of the board under Windows 95/98/NT/2000.
Advanced users can access all the functions of the board using the standard programming languages
supported with optionally included DLL library.
The board is compatible with the RT-CON real-time development toolbox distributed by INTECO. The
toolbox integrates input/output RT-DAC4/PCI board capabilities to MATLAB/Simulink functionality
and creates an ideal design and application environment.

Fig. 1 presents the block diagram of the RT-DAC4/PCI board. The board contains the analog input
multiplexer connected to 16 single-ended analog input channels. Voltage ranges are defined from –10V to 10V
(bipolar). The RT-DAC4/PCI board includes the software-programmable gain amplifier that can be configured
for the voltage gains 1,2,4,8,16 to accommodate low-level and high level analoge input signals.

A/D
Converter

Programmable
gain

16 channels
MUX (A/D)

Range
selection

D/A
Converters

XILINX

FPGA

Ch0

Ch3

Buffers
(D/A)

PCI Bus

PLX

PCI Bridge

Digital I/O, PWM,
Encoders,
Interrupts

Connectors (digital I/O)

Fig. 1. General block diagram of the RT-DAC4/PCI board

INTECO

RT-DAC4/PCI - User’s manual page 5

The board is equipped with 12-bit successive approximation A/D converters that give the 5 mV resolution

within input range ±10V. Finer resolution can be achieved by the gain definition using gain. The A/D conversion
time of the RT-DAC4/PCI board is equal to 1.6 µs. This means that Troughoutput Rate is greater than 500kSPS.

The board contains four 12-bits D/A converters connected to four analog output channels. All channels can
be hardware configured to operate in the unipolar or bipolar mode. Each analog output channel can sink up to 10
mA.

There are 32 digital I/O lines at the RT-DAC4/PCI board. Digital I/O lines are LVTTL compatible. The
direction of each digital I/O can be configured separately.

The default configuration of the RT-DAC4/PCI includes four PWM outputs and four input channels of the
incremental encoders. The PWM outputs and encoders inputs turn the PC into a digital controller to be used in
control of manipulators, servo systems, etc.

Two digital signal generators can be applied to generate signals with an arbitrary duty cycle.
PCI interrupts are born in the interrupt generation block. They come out from different sources: software,

timer, two external signals and change-of-state at thirty two digital inputs.
Reprogramming the XILINX FPGA chip can change functions of the digital section of the board. The

interior of the FPGA chip is presented in Fig.2. Beside digital I/O and interrupts, there are the FPGA logic which
implements A/D and D/A control functions and the board controller. The FPGA chip is connected to a hardware
oscillator, which gives a high counting resolution. Different versions of the board operate at different frequencies
(typically 40 MHz).

The board is equipped with six 20-pin ribbon cable connectors. The detailed block diagram of the RT-
DAC4/PCI board (including connectors) is given in sections 3 and 4.

XILINX
FPGA

Digital I/O

Module

PWM

Module

Incremental Encoders

Module

Control Module

P
L

X
 B

U
S

Analog I/O
Handling
Module

A/D control & data

A
/D

,
D

/A
, C

O
N

V
E

R
T

E
R

S

D
/I

O
 x

 3
2

P
W

M
 x

 4

E
n

co
d

er
 x

 4

D/A control & data

Signal

Generators

Interrupt

Block

G
en

 x
 2

E
xt

In
t

x
2

Fig. 2. The default structure of the Xilinx FPGA chip

The next section contains the basic information necessary to install and test the board. The

information and specification how to reprogram XILINX FPGA is not included in this guide. Please, relate
to RT-DAC4/PCI FPGA Programming Guide distributed by INTECO separately.

INTECO

RT-DAC4/PCI - User’s manual page 6

2. BOARD INSTALLATION

The RT-DAC4/PCI setup contains:

• RT-DAC4/PCI board,
• RT-DAC4/PCI Testing Software,
• 2 ribbon cables,
• RT-DAC4/PCI User’s Manual - this manual,
• terminal wiring board (optional).

The RT-DAC4/PCI board contains sensitive electric components which can be easily damaged by
static electricity, therefore the board should be kept in its original anti-static packing until it is installed.
During installation the board should be handled carefully only by the edges to avoid static electric
discharge.

To install the board:

• turn off the computer and remove the cover,
• find an empty 32-bit PCI slot and remove the metal bracket,
• check jumper settings for your configuration (see section 4),
• insert the RT-DAC4/PCI board into the expansion slot firmly and evenly, then secure the board with the

bracket screw and install the cover,
• turn on the computer,
• install driver for the board (see section 3 or CD:\DRIVER\readme*.txt),
• install the Testing Software or
• install RT-CON package,
• test the board.

3. DRIVER INSTALLATION
The driver for RTDAC4/PCI board has to be installed because the board is of the PCI type. The way of

driver installation depends on operating system. The user with administrator privileges must install the drivers
for Windows XP and Windows 7.

3.1 Installation

Administrator privileges are required for driver installation.

• Start Windows XP/7
• System detects new PCI device
• Select Next, then Display a list....
• Select Other Devices, then Next
• Select Have a disk, then Browse
• Select path CD:\driver\WinW7x86\RTDAC4_PCI9030.inf, then Open
• Select OK and Next, and Next
• Select Finish

If Windows propose to restart the computer select Yes.

INTECO

RT-DAC4/PCI - User’s manual page 7

4. JUMPER SETTINGS
The RT-DAC4/PCI board is equipped with two jumpers for configuration setting. The board layout is

shown in Fig. 3.

CN3

CN2

CN1
CN4

CN5

CN6

 XILINX

JP1

PLX

CN3

RT-DAC4 / PCI JP4

SW1

SW2

.

Fig. 3. The layout of the RT-DAC4/PCI board

4.1 Output range selection – JP1

RT-DAC4/PCI is equipped with four analogue output channels. The user can set the output range for all
channels. The JP1 jumper supports all channels (Table 1).

Table 1. D/A range selection

Pin 0 ÷10 V -10 ÷ 10V -10 ÷ 0V
1-2 closed
3-4 closed

X

1-2 closed
4-5 closed

X

2-3 closed
4-5 closed

X

All others N/A

4.2 Dip switches for FPGA programming

The SW1 and SW2 switches allow a user to choose a programming method of XILINX FPGA. If you are
using the default XILINX FPGA configuration do not change the settings of these switches. The default
settings are defined as follows.

Dipswitch
SW1

Settings Dipswitch
SW2

Settings

SW1 – 1 close SW2 – 1 Open
SW1 – 2 close SW2 – 2 Open
SW1 – 3 close SW2 – 3 Open
SW1 – 4 open SW2 – 4 Open

INTECO

RT-DAC4/PCI - User’s manual page 8

5. CONNECTOR PIN ASSIGNMENTS
RT-DAC4/PCI is equipped with two 20-pin I/O connectors CN1, CN2 accessible from the rear bracket, and

four 20-pin I/O connectors CN3, CN4, CN5 and CN6 on the board (see Fig. 3). Fig. 4 shows the pin assignment
of each connector.

CN1
A/I – Analog Input
GND A - Analog Ground

GND A
GND A

GND A

GND A
GND A

GND A
GND A
GND A
GND A
GND A

A/I 1
A/I 0

A/I 2

A/I 4
A/I 3

A/I 5
A/I 6
A/I 7
A/I 8
A/I 9

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

CN2
A/I – Analog Input
A/O – Analog Output

GND A
GND A

GND A

GND A
GND A

GND A
GND A
GND A
GND A
GND A

A/I 11
A/I 10

A/I 12

A/I 14
A/I 13

A/I 15

A/O 0
A/O 1
A/O 2
A/O 3

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

CN3
D I/O Digital Input/Output
GND - Digital ground

D I/O 3
D I/O 1

D I/O 5

D I/O 9
D I/O 7

D I/O 11
D I/O 13
D I/O 15
GND

+5V

D I/O 2
D I/O 0

D I/O 4

D I/O 8
D I/O 6

D I/O 10
D I/O 12
D I/O 14

GND
+3.3V

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

CN4
D I/O Digital Input/Output
GND - Digital ground

D I/O 19
D I/O 17

D I/O 21

D I/O 25
D I/O 23

D I/O 27
D I/O 29
D I/O 31
GND

+5V

D I/O 18
D I/O 16

D I/O 20

D I/O 24
D I/O 22

D I/O 26
D I/O 28
D I/O 30

GND
+3.3V

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

CN5
PWM and COUNTER
outputs

 PWM0

GND
All pins

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

PWM1
PWM2
PWM3

CNT0

CNT1

ExtInt0
ExtInt1

GEN0
GEN1

CN6
Encoder inputs

 ENC 0 - A

GND
All pins

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

ENC 0 - B

ENC 1 – B
ENC 1 – A

ENC 2 - A
ENC 2 - B

ENC 3 – B
ENC 3 – A

Reserved
Reserved

Fig. 4. RT-DAC4/PCI I/O connectors

The further information included in section 5 can be used by advanced users.

INTECO

RT-DAC4/PCI - User’s manual page 9

6. REGISTER STRUCTURE AND FORMAT
Table 2 shows the offset of each registers and the control words relative to the I/O base address of the RT-

DAC4/PCI board. This information is necessary to configure RT-DAC4/PCI board to serve ones own
system.

It is assumed that each offset in Table 2 reserves 4 bytes in the I/O address space. Some functions do not
require all of 32 information bits. In such a case the most significant bits have to be neglected. The functionality
description given below corresponds only to meaningful bits. The convention applied is that the most significant
bit is denoted D31 and the least significant bit D0.

The RT-DAC4/PCI access functions are defined in the rtdacpci.c file. This file contains the API macro

definitions (see Table 2) and C API functions referred to the description of the board functions.
Notice: The rtdacpci.c file is accessible after installation of the RT-CON toolbox or installation of Testing

Software.
In the examples of the next sections it is assumed that the BaseAddr variable is the base I/O space address

of the board. The RT-DAC4/PCI board is located in the I/O address space of the microprocessor. The offset can
vary because the PCI bus controller determines its value automatically. The current base address of the board can
be detected by Testing Software or by the MATLAB mex_baseaddress function.

Table 2. I/O address space map

Byte offset
Decimal Hexadecimal

Description
API macro definition

Version management
0 00 XILINX bitstream version (read only)

RTDACPCI_BITSTREAM_VERSION
4 04 Number of digital signal generators, counters,

timers, PWM and encoders (read only)
RTDACPCI_NO_OF_CHANNELS

8 08 Application name (read only)
RTDACPCI_APPLICATION_NAME

Counter/timer
32 20 Counter index

RTDACPCI_COUNTER_IDX
36 24 Load a new counter value

RTDACPCI_COUNTER_LOAD
40 28 Counter value

RTDACPCI_COUNTER
44 2C Timer index

RTDACPCI_TIMER_IDX
48 30 Load a new timer value

RTDACPCI_TIMER_LOAD
52 34 Timer value

RTDACPCI_TIMER
Digital I/O
64 40 Digital I/O directions of 16 least significant

digital I/O lines
RTDACPCI_DIG_IO_DIR_L

68 44 Digital I/O directions of 16 most significant
digital I/O lines
RTDACPCI_DIG_IO_DIR_H

72 48 Digital input/output values of 16 least
significant digital I/O lines
RTDACPCI_DIG_IO_VALUE_L

76 4C Digital input/output values of 16 most
significant digital I/O lines
RTDACPCI_DIG_IO_VALUE_H

INTECO

RT-DAC4/PCI - User’s manual page 10

PWM
96 60 PWM index

RTDACPCI_PWM_IDX
100 64 PWM mode

RTDACPCI_PWM_MODE
104 68 PWM prescaler

RTDACPCI_PWM_PRESCALER
108 6C PWM channel width

RTDACPCI_PWM_WIDTH
Digital signal generators

112 70 Generator index
RTDACPCI_WAVE_IDX

116 74 Duration of the H state
RTDACPCI_WAVE_L

120 78 Duration of the L state
RTDACPCI_WAVE_H

Encoders
128 80 Encoder index

RTDACPCI_ENCODER_IDX
132 84 Reset encoder counters

RTDACPCI_RESET
136 88 Encoder counter

RTDACPCI_ENCODER
A/D conversion

160 A0 A/D channel and gain
RTDACPCI_AD_MUX

164 A4 A/D control signals (ADSTART, CS, RD)
RTDACPCI_AD_CONTROL

168 A8 Conversion result
RTDACPCI_AD_RESULT

D/A conversion
192 C0 D/A control signals (LDAC, CS, A1, A0, WR)

RTDACPCI_DA_CONTROL
196 C4 D/A channel

RTDACPCI_DA
Interrupts

224 E0 Interrupt flags
RTDACPCI_INTR_FLAGS

228 E4 Interrupt status
RTDACPCI_INTR_STATUS

232 E8 Interrupt timer period
RTDACPCI_INTR_PERIOD

236 EC Change-of-state LSW mask
RTDACPCI_COS_MASK_L

240 F0 Change-of-state MSW mask
RTDACPCI_COS_MASK_H

244 F4 Change-of-state “before” value
RTDACPCI_COS_BEFORE

248 F8 Change-of-state “after” value
RTDACPCI_COS_AFTER

6.1 Before using a C API functions

To use C API functions in a user application the following statements have to be included at the beginning of
the C-source file:

INTECO

RT-DAC4/PCI - User’s manual page 11

#define RTDAC_PCI_VERSION_API
#define RTDAC_PCI_COUNTER_API
#define RTDAC_PCI_TIMER_API
#define RTDAC_PCI_DIGITALDIRECTIONS_API
#define RTDAC_PCI_DIGITAL_IO_API
#define RTDAC_PCI_PWM_API
#define RTDAC_PCI_GENERATOR_API
#define RTDAC_PCI_ENCODER_API
#define RTDAC_PCI_AD_API
#define RTDAC_PCI_DA_API
#define RTDAC_PCI_INTR_API
#define RTDAC_PCI_FIFO_API
#define RTDAC_PCI_FREQM_API

// For PLC API I/O access functions
#define _inp(A) ReadByte(A)
#define _inpw(A) ReadWord(A)
#define _inpd(A) ReadDWord(A)
#define _outp(A,B) WriteByte(A,B)
#define _outpw(A,B) WriteWord(A,B)
#define _outpd(A,B) WriteDWord(A,B)

#include "rtdacpci.c"

The statements define the macro definitions required by the rtdacpci.c file. The API functions are

implemented in the rtdacapi.c.

To be able to establish the communication with the RT-DAC/PCI board there are required functions to
access the I/O address space of the board. The communication is performed by the functions from the PLX
library (the PlxApi631.dll file).

The RT-DAC/PCI functions are implemented in the rtdacapi.dll library. For convenience also the
rtdacapi.lib and rtdacapi.h files are available.

The names of the I/o access functions are:
ReadByte(address) - read a single byte from the address location
ReadWord(address) - read a single word from the address location
ReadDWord(address) - read a double word from the address location
WriteByte(address,value) - writes a single byte value to the address location
WriteWord(address,value) - writes a single word value to the address location
WriteDWord(address,value) - writes a double word value to the address location

The following Visual Studio projects are given as examples:

• RT-DAC PCI Test - VS 2010 project of the test program
• Common/RTDAC_PCI_API_PLX_IO - VS 2010 project to build the RTDACAPI.dll

6.2 Version management

The RT-DAC4/PCI board is equipped with XILINX FPGA. All functions of the board are implemented as
the FPGA project (except the PCI communication functions). The FPGA logic can be easily changed and
tailored to the user requirements. The bitstream version function (I/O address offset 0) enables one to
distinguish different logic versions (Table 2). The I/O address offset equal to 4 allows one to read current
number of digital signal generators, counter, timer, PWM and encoder channels.

For example, to read the number of available channels relating to: digital signal generators, counters,

timers, PWM and encoders the following C-statements can be executed:
NoOfChans = _inpd(BaseAddr) & 0xFFFFF; // read no of channels
NoOfGenerators = (NoOfChans >> 16) & 0xF;
NoOfCounters = (NoOfChans >> 12) & 0xF;
NoOfTimers = (NoOfChans >> 8) & 0xF;
NoOfPWM = (NoOfChans >> 4) & 0xF;

INTECO

RT-DAC4/PCI - User’s manual page 12

NoOfEncoders = NoOfChans & 0xF;

or the following API functions can be called:

NoOfGenerators = RtdacPCI_ReadNoOfGenerators(BaseAddr);
NoOfCounters = RtdacPCI_ReadNoOfCounters(BaseAddr);
NoOfTimers = RtdacPCI_ReadNoOfTimers(BaseAddr);
NoOfPWM = RtdacPCI_PWMNoOfChans(BaseAddr);
NoOfEncoders = RtdacPCI_ReadNoOfEncoders(BaseAddr) ;

Version management functions

I/O space byte offset: 0
Function: read version of FPGA bitstream.
Used bits: D15-D0
C API function name: RtdacPCI_BitstreamVersion

I/O space byte offset: 4

Function: read number of: digital signal generators, counters, timers, PWM outputs and
encoders.

Used bits: D19-D16 – number of generators
D15-D12 – number of counters
D11-D8 – number of timers
D7-D4 – number of PWM outputs
D3-D0 – number of encoders

C API function name: RtdacPCI_ReadNoOfGenerators
RtdacPCI_ReadNoOfCounters
RtdacPCI_ReadNoOfTimers
RtdacPCI_PWMNoOfChans
RtdacPCI_ReadNoOfEncoders

I/O space byte offset: 8
Function: read application name. Returns four-characters logic name.
Used bits: D31-D0
C API function name: RtdacPCI_AppName

INTECO

RT-DAC4/PCI - User’s manual page 13

6.3 Counter/timer
RT-DAC4/PCI includes 32-bit timer and 16-bit channels counter. The channel timer counts pulses of the

internal board clock. The frequency of the clock depends on the board version (40 MHz is the default value). The
channel counter counts external pulses.

To access the appropriate timer or counter the channel must be selected by setting an appropriate value to
the I/O offset. The offset equal to 32 is used for counters, the offset 44 is used for timers. The I/O offset equal to
36 is used to reset counters. The I/O offset equal to 48 is used to reset timers. The I/O offset 40 is used to read
current counter value. The I/O offset 52 is used to read current timer value.

For example, to reset timer 0 and start counting of the internal clock impulses the following C-statements

can be executed:
 _outpd(BaseAddr + 44, 0); // select timer 0

_outpd(BaseAddr + 48, 1); // reset current timer
_outpd(BaseAddr + 48, 0); // return to counting mode
…
TmrValue = _inpd(BaseAddr + 52); // read current timer value

or the following API functions can be called:

RtdacPCI_ResetTimer(BaseAddr, 0, 1); // reset timer 0
RtdacPCI_ResetTimer(BaseAddr, 0, 0); // set timer 0 to counting mode
…….
TmrValue = RtdacPCI_ReadTimer(BaseAddr, 0);

Counter/timer functions

I/O space byte offset: 32
Function: read/write current counter number
Used bits: D3-D0 – counter number
C API function name: RtdacPCI_ReadCounter

I/O space byte offset: 36

Function: reset the counter value.
Used bits: D0 –when equal to ‘0’ the counter counts input impulses. When equal to ‘1’ the

current counter is set to zero.
C API function name: RtdacPCI_ReadCounter

I/O space byte offset: 40

Function: reads the current counter value.
Used bits: D16-D0 – the counter value.
C API function name: RtdacPCI_ReadCounter

I/O space byte offset: 44

Function: read/write the current timer number.
Used bits: D3-D0 – the timer number.
C API function name: RtdacPCI_ReadTimer

I/O space byte offset: 48

Function: reset the timer value.
Used bits: D0 –when equal to ‘0’ the timer counts the input clock impulses. When equal to

‘1’ the current timer is set to zero.
C API function name: RtdacPCI_ReadTimer

I/O space byte offset: 52

Function: reads the current timer value.
Used bits: D31-D0 – the timer value.
C API function name: RtdacPCI_ReadTimer

INTECO

RT-DAC4/PCI - User’s manual page 14

6.4 Digital I/O
The RT-DAC4/PCI board contains 32 digital input/output lines. The digital I/O lines are connected to the D

I/O0 – D I/O31 pins of the CN3 and CN4 connectors.
The direction of each line can be set separately. The direction is determined by the value written to the I/O

offsets 64 and 68. The I/O offset 64 determines the direction of D I/O0 to D I/O15. The I/O offset 68 determines
the direction of D I/O16 to D I/O31. When a bit of the direction control word is set to ‘0’ the appropriate digital
line is configured as output. The value ‘1’ sets the digital line as input.

The input lines can be read and output lines can be set by the I/O offset 72 and 76. The I/O offset 72
determines the state of D I/O0 to D I/O15. The I/O offset 68 determines the state of D I/O16 to D I/O31.

For example, to set lines D I/O0-D I/O15 as outputs and to set D I/O16 to D I/O31 as inputs, set all output

lines to logic state ‘1’ and read all 16 inputs, the following C-statements can be executed:
_outpd(BaseAddr + 64, 0x0000); // set directions of D I/O0 to D I/O15
_outpd(BaseAddr + 68, 0xFFFF); // set directions of D I/O16 to D I/O 31
_outpd(BaseAddr + 76, 0xFFFF); // set all outputs to ‘1’
DigInp = _inpd(BaseAddr + 72) & 0xFFFF; // read digital inputs

or the following API functions can be called:

RtdacPCI_WriteDigIOConfig(BaseAddr, 0xFFFF0000);
RtdacPCI_WriteDigIO(BaseAddr, 0xFFFF0000);
DigInp = RtdacPCI_ReadDigIO(BaseAddr);

Digital I/O functions

I/O space byte offset: 64
Function: read/write the directions of the D I/O0 to D I/O15 digital I/O signals.
Used bits: D15-D0 – define the directions of the 16 least significant digital I/O lines. Each bit

defines the direction of the appropriate digital line. When set to ‘0’ the line works
as output, when set to ‘1’ the line is an input.

C API function name: RtdacPCI_WriteDigIOConfig
RtdacPCI_ReadDigIOConfig

I/O space byte offset: 68

Function: read/write the directions of the D I/O16 to D I/O31 digital I/O signals.
Used bits: D15-D0 – define the directions of 16 most significant digital I/O lines. Each bit

defines the direction of the appropriate digital line. When set to ‘0’ the line works
as output, when set to ‘1’ the line is input.

C API function name: RtdacPCI_WriteDigIOConfig
RtdacPCI_ReadDigIOConfig

I/O space byte offset: 72

Function: read/write the state of the D I/O0 to D I/O15 digital I/O signals.
Used bits: D15-D0 – reads the state of 16 least significant digital inputs or sets the state of

digital outputs.
C API function name: RtdacPCI_WriteDig

RtdacPCI_ReadDig

I/O space byte offset: 76

Function: read/write the state of the D I/O16 to D I/O31 digital I/O signals.
Used bits: D15-D0 – reads the state of 16 most significant digital inputs or sets the state of

digital outputs.
C API function name: RtdacPCI_WriteDig

RtdacPCI_ReadDig

INTECO

RT-DAC4/PCI - User’s manual page 15

6.5 PWM
The RT-DAC4/PCI board includes four output PWM channels denoted PWM0 to PWM3. The base PWM

period and the period of the “H” state of each channel are selected separately (see Fig. 5). The counters of the
base PWM period and the “H” state period can work in the 12 or 8-bit mode. The 8-bit mode allows PWM to
operate in high speed and the 12-bit mode allows PWM to achieve high accuracy of the output.

In the 12-bit mode a single PWM period contains 4095 impulses of the output prescaler frequency. The
time of logic output ‘1’ is set by a number from 0 to 4095. In the 8-bit mode a PWM period contains 255
impulses of the output prescaler frequency. The time of logic ‘1’ is set by a number from 0 to 255. The 8-bit
mode is used for high speed. The 12-bit mode gives a high accuracy.

The input (base) frequency of the PWM channels is set by default to: 40MHz, 30MHz or 20MHz. It
depends on board version. This frequency is divided by the counter (called prescaler), which creates the PWM
base period and the period of the “H” state. The valid prescaler value is a number taken from the range [0 -
65535].

The frequency of the PWM wave is calculated by the formula:

255)1(∗+
=

prescaler

f
f base

PWM for 8-bit mode

4095)1(∗+
=

prescaler

f
f base

PWM for 12-bit mode

40/30/20 MHz PWM prescaler
Dividers:

Mod 255 or 4095

PWM width Comparator

PWM
Output Wave

Fig. 5. Block diagram of the PWM generator

To set the correct wave of a PWM channel the number of channel have to be written to the I/O space offset
96. The I/O offset equal to 100 sets the PWM mode, the I/O offset equal to 104 sets the prescaler value and the
I/O offset equal to 108 determines the PWM duty cycle.

For example, to set: PWM2 to 12-bit mode, prescaler to 1200 and duty cycle to 50% the following C-

statements can be executed:
_outpd(BaseAddr + 96, 2); // select PWM2 as the current PWM channel
_outpd(BaseAddr + 100, 1); // select the 12-bit mode of the current channel
_outpd(BaseAddr + 104, 1200); // set prescaler to 1200
_outpd(BaseAddr + 108, 2047); // set duty cycle to 50 % (2047 is 50% of 4095)

or the following API function can be called:

RtdacPCI_PWMWrite(BaseAddr, 2, 1, 1200, 2047);

PWM functions

I/O space byte offset: 96
Function: read/write the current PWM channel.
Used bits: D3-D0 – PWM channel number.
C API function name: RtdacPCI_PWMChannel

RtdacPCI_PWMWrite

I/O space byte offset: 100

Function: read/write the mode of the current PWM channel.
Used bits: D0 – ‘0’ defines the 8-bit mode, ‘1’ defines the 12-bit PWM mode.
C API function name: RtdacPCI_PWMMode

INTECO

RT-DAC4/PCI - User’s manual page 16

RtdacPCI_PWMWrite

I/O space byte offset: 104

Function: read/write the prescaler for the current PWM channel
Used bits: D15-D0 – the divider value.
C API function name: RtdacPCI_PWMPrescaler

RtdacPCI_PWMWrite

I/O space byte offset: 108

Function: read/write the width value of the current PWM channel.
Used bits: D7-D0 – for the 8-bit mode

D11-D0 – for the 12-bit mode.
C API function name: RtdacPCI_PWMWidth

RtdacPCI_PWMWrite

6.6 Digital signal generators
The RT-DAC4/PCI board includes two outputs of digital signal generators denoted as GEN0 and GEN1.

The output waves are generated on the basis of the default (40 MHz frequency) wave signal. The software sets
the durations of the L and H states of the generated waves independently.

To set the correct output wave the channel number must be selected by setting an appropriate value to the
I/O space offset equal to 112. The I/O offset equal to 116 sets the duration of the L state and the I/O offset equal
to 120 sets the duration of the H state of the generated output.

For example, to set the GEN1 to generate the wave kept at the L state 100 time periods of the base wave

long and kept at the H state 300 time periods long the following C-statements have to be executed:
_outpd(BaseAddr + 112, 1); // select GEN1 channel
_outpd(BaseAddr + 116, 100); // set duration of the L state
_outpd(BaseAddr + 120, 300); // set duration of the H state

or the following API function can be called:

RtdacPCI_WriteGeneratorL (BaseAddr, 1, 100);
RtdacPCI_WriteGeneratorH (BaseAddr, 1, 300);

If the base wave frequency on the board is 40MHz then GEN1 generates the 100kHz wave with the duty cycle
equal to 75%.

Digital signal generator functions

I/O space byte offset: 112
Function: read/write the current wave generator channel.
Used bits: D3-D0 – wave generator channel number.
C API function name: RtdacPCI_ ReadGeneratorL

RtdacPCI_ ReadGeneratorH
RtdacPCI_ WriteGeneratorL
RtdacPCI_ WriteGeneratorH

I/O space byte offset: 116

Function: read/write the duration of the L state.
Used bits: D27-D0 – defines the number of periods of the base wave when the output is

L.
C API function name: RtdacPCI_ ReadGeneratorL

RtdacPCI_ WriteGeneratorL

I/O space byte offset: 120

Function: read/write the duration of the H state.
Used bits: D27-D0 – defines the number of periods of the base wave when the output is

H.
C API function name: RtdacPCI_ ReadGeneratorH

RtdacPCI_ WriteGeneratorH

INTECO

RT-DAC4/PCI - User’s manual page 17

6.7 Encoders
The RT-DAC4/PCI board includes four 32-bit incremental encoder input channels denoted as ENC0-

ENC3. Each channel counts the changes of two input waves. The initial value of each encoder counter can be set
to zero in a programmable way.

The appropriate encoder input channel has to be selected by writing a given value to the I/O offset equal
to128. The I/O space offset equal to 132 is used to reset encoder counters. The bits of the 132 I/O offset reset the
corresponding encoders. A single write action to the 132 offset can reset all the encoder counters. The I/O space
offset equal to 136 is used to read the current encoder counter value.

For example: to reset encoder ENC2, start counting and read data the following C-statements can be

executed:
_outpd(BaseAddr + 132, 4); // set the third bit – only ENC2 is reset l
_outpd(BaseAddr + 132, 0); // set reset flags to zero for all encoders –
 // normal operation of encoder counters
………
_ outpd(BaseAddr + 128, 2); // select ENC2 as the current encoder
Counter = _inpd(BaseAddr + 136); // read current counter value

or the following API functions can be called:

RtdacPCI_ResetEncoder(BaseAddr, 2, 1);
RtdacPCI_ResetEncoder(BaseAddr, 2, 0);
………
Counter = RtdacPCI_ReadEncoder(BaseAddr, 2);

Encoder functions

I/O space byte offset: 128
Function: read/write the current encoder channel.
Used bits: D3-D0 – the encoder channel number.
C API function name: RtdacPCI_ReadEncoder

I/O space byte offset: 132

Function: reset encoder counters.
Used bits: D3 – D0 – four bits responsible for resetting four encoder counters. If a bit is

set, the corresponding encoder counter is set to zero.
C API function name: RtdacPCI_EncoderReset

I/O space byte offset: 136

Function: reads the current encoder counter value.
Used bits: D31-D0 – for the 8-bit mode
C API function name: RtdacPCI_ReadEncoder

INTECO

RT-DAC4/PCI - User’s manual page 18

6.8 A/D Conversion

The RT-DAC4/PCI is equipped with 16 multiplexed analog inputs. The output of the analog multiplexer is
connected to the input of the digital programmable analog amplifier. The 160 I/O offset is used to select an input
channel and an amplifier gain. The Table 3 and the Table 4 show the setting for the D6÷D4 and D3÷D0 bits.

Table 3. Gain setting

D6 D5 D4 Amp. Gain
0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 X X 16

Table 4. Channel selection

D3 D2 D1 D0 Channel no.
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

The RT-DAC4/PCI board is equipped with the parallel 12-bit A/D converter. The A/D converter control is

performed by the I/O offset 164. The end-of-conversion (EOC) flag is accessible at offset 164. The A/D
conversion results are available at I/O offset 168.

The A/D control word (offset 164) contains three signals: RD# (D2), CS# (D1) and CONVST# (D0). The
low state of the CS# signal is used to enable the A/D converter. When the CS# signal is high the converter is
disabled. The RD# signal is used to read the last A/D conversion results. The A/D conversion starts if the rising
edge of the CONVST signal occurs. The conversion can be started when the CS signal is high. The EOC signal,
available to read at I/O offset 164 (D0 when read offset 164), detects the termination of the A/D conversion.
When the EOC is equal to ‘0’ the conversion results are ready to be read.

For example, to start A/D conversion of the analog input 3, set the gain to 1 and read the conversion results,

the following C-statements can be executed:

_outpd(BaseAddr+160, 0x03); // set gain and channel number
_outpd(BaseAddr+164, 0x6); // set CONVST to 0 (D0 set to 0)
_outpd(BaseAddr+164, 0x7); // set CONVST to 1
_outpd(BaseAddr+164, 0x5); // set CS to 0 (D1 set to 0)
_outpd(BaseAddr+164, 0x1); // set CS to 0 and RD to 0 (D1 and D2 set to 0)
while((_inpd(BaseAddr+164) & 1) ~= 0) ; // wait for EOC equal to 0
ADResult = _inpd(BaseAddr+168); // read A/D conversion result
ADResult = ADResult & 0xFFF; // mask only 12 bits
_outpd(BaseAddr+164), 0x7); // set CONVST, RD, and CS to 1

or the following API function can be called:

ADResult = RtdacPCI_AD(BaseAddr, 3, 1);

INTECO

RT-DAC4/PCI - User’s manual page 19

A/D converter functions

I/O space byte offset: 160
Function: select the channel and gain.

Used bits: D3-D0 – the analog input channel (see

Table 4)

 D6-D4 – the analog amplifier gain (see Table 3)
C API function name: RtdacPCI_AD

I/O space byte offset: 164

Function: sets the A/D control or reads the A/D end of conversion signal.
Used bits: when write:

D0 – the CONVST# signal,
D1 – the CS# signal,
D2 – the RD# signal,

when read:
D0 – the EOC signal.

C API function name: RtdacPCI_AD

I/O space byte offset: 168

Function: reads the A/D conversion results.
Used bits: D11-D0 – the result of the last A/D conversion
C API function name: RtdacPCI_AD

6.9 D/A Conversion

The RT-DAC4/PCI board is equipped with four-channel 12-bit D/A converter. The converter is controlled
by the A1, A0, LDAC#, R/W# and CS# signals. The signals are controlled by the I/O offset 192 (A1 at D4, A0 at
D3, LDAC# at D2, R/W# at D1 and CS# at D0). The A1 and A0 signals select a appropriate output channel. The
R/W# signal is used to store data in the D/A converter buffer. The rising edge of the LDAC# signal moves data
from the D/A converter buffer to the D/A converter. The input data for the D/A converter are written to the I/O
offset 196. The CS# signal enables the D/A converter. The data movement controlled by the LDAC# signal can
be performed even if CS# is disabled.

To set a new output voltage equivalent to the digit 1500 at the D/A channel 2, the following C-statements

can be executed:
_outpd(BaseAddr+192, 0x14); // set ‘A1A0’ to ‘10’ (2), LDAC to 1,

// R/W to 0 and CS to 0
_outpd(BaseAddr+196), 1500); // set data to the D/A buffer

// Update D/A converter – the new analog voltage will appear
_outpd(BaseAddr+192, 0x11); // set ‘A1A0’ to ‘10’ (2), LDAC to 0,

// R/W to 0 and CS to 1
_outpd(BaseAddr+192, 0x15); // set ‘A1A0’ to ‘10’ (2), LDAC to 1,

// R/W to 0 and CS to 1

or the following API function can be called:

RtdacPCI_DA(BaseAddr, 2, 1500);

D/A converter functions

I/O space byte offset: 192
Function: writes the D/A converter control signals.
Used bits: D4-D3 – the A1 and A0 signals,

D2 – the LDAC# signal,
D1 – the R/W# signal,
D0 – the CS# signal.

INTECO

RT-DAC4/PCI - User’s manual page 20

C API function name: RtdacPCI_DA

I/O space byte offset: 196
Function: sets D/A data.
Used bits: D11-D0 – data for the D/A converter.
C API function name: RtdacPCI_DA

6.10 Interrupts

The RT-DAC4/PCI board is able to generate the INTA# PCI interrupt. The parameters of the interrupts are
set in two I/O locations. The first one is the internal PLX9030 I/O space. The second is RT-DAC4/PCI logic I/O
space. The base address of the internal PLX9030 I/O space is returned by the mex_pcibar1 MATLAB function
(as well as by the call to the BoardLocationEx basic API function). The base address of the RT-DAC4/PCI logic
I/O space is returned by the mex_baseaddress MATLAB function (or by the call to the BoardLocation basic API
function).

The internal PLX9030 I/O space is responsible for the parameters of the PCI bridge, including the PCI
interrupt generation. The RT-DAC4/PCI logic generates interrupt signal which triggers the PLX9030 chip. This
signal is denoted as the local interrupt. If local interrupt is active the PLX9030 can generate the INTA# PCI
interrupt.

The parameters of the PCI INTA# interrupt are set by the location, which offset in the internal PLX9030
I/O space is equal to 4C hex. The name of this location is INTCSR. The bits of the INTCSR have the following
meaning:

0 – Local interrupt enable. Value of 1 indicates enabled interrupt generation by the RT-DAC4/PCI logic.
Value of 0 indicates disabled,

1 – Local interrupt polarity . Value of 1 indicates active high. Value of 0 indicates active high,
2 – Local interrupt status. Value of 1 indicates interrupt active. Value of 0 indicates interrupt not active,
3-5 – reserved,
6 – PCI interrupt enable. Value of 1 enables PCI interrupt,
7 – Software interrupt. Value of 1 generates software interrupt,
8 - Local interrupt select enable. Value of 1 indicates enabled edge triggerable interrupt. Value of 0

indicates enabled level trigerrable interrupt. Operates only in high polarity mode,
9 – reserved,
10 – Local edge trigerrable interrupt clear. Writing 1 to this bit clears local interrupt,
11-15 – reserved.

The interrupts can be level or edge triggered. The RT-DAC4/PCI logic uses only edge triggering. The
IntrInit procedure from the board basic API enables local interrupt (bit 0 set to 1), sets high polarity mode (bit 1
set to 1), enables PCI interrupts (bit 6 set to 1) and enables edge local interrupt trigger (bit 8 set to 1). The
IntrResponse procedure clears interrupt by setting the bit 10 to 1.

Each interrupt requests are stored in the RT-DAC4/PCI register. Only one of the requested local interrupts

can generate the PCI interrupt. The PCI handling procedure must be able to distinguish which local interrupt
source has generated the PCI interrupt and which interrupt requests are queued.

The I/O offset equal to 224 activates the interrupt sources and clears the interrupt requests. The I/O offset
equal to 228 is used to read which local interrupt source has generated the current PCI interrupt and the queued
interrupts. The I/O offset 232 defines the period of the interrupt timer. The timer is applied to periodically
generation of interrupts. The period of the timer is defined in 25ns units. Be sure not to define too short interrupt
period, because it may degrade the performance of the computer system. The I/O offsets 236 and 240 are used to
define which digital inputs are considered when the change-of-state interrupt is generated. The I/O location 236
is responsible for digital signals from the CN3 connector and the location 240 is responsible for the CN4 signals.
Only digital signals defined as input are applied to detect the COS. When the COS interrupt is generated the state
of digital inputs before and after the interrupt generation moment can be read from the I/O locations 244 and 248
respectively.

Let us configure the interrupt block to generate interrupts from all available interrupt sources. The frequency of
the timer interrupt will be set to 1kHz. The following steps have to be performed:

• clear of all interrupt sources,

INTECO

RT-DAC4/PCI - User’s manual page 21

• thread creation. To implement the interrupt handling procedure it is recommended to create a thread.
The thread operates as interrupt handling procedure,

• enabling required interrupt sources. Setting interrupt timer period if timer interrupt source enabled.

To simplify the programming the basic API functions will be applied (see section 7 for details). The following
statements perform all actions required by interrupt services:

HANDLE hThread;
ULONG IDThread;
char Str[200];
int ret;
int BusNo, SlotNo, VendorID, DeviceID, BaseAddress;
int RTDAC_BaseAddress;

if(NoOfDetectedBoards() < 1)
 return;
ret = BoardLocation(1, &BusNo, &SlotNo,
 &VendorID, &DeviceID, &BaseAddress);
if(ret != 0)
 return;
RTDAC_BaseAddress = BaseAddress;

// clear all interrupt requests
WriteByte(BaseAddress+224, 0);

// Call API interrupt initialisation procedure
if((ret=IntrInit(1)) < 0) {
 ErrorAction();
}

// enable local interrupt generation and enable local timer interrupt
WriteByte(BaseAddress+224, 0x88);
// set timer period to 1kHz – 40000 impulses of 25ns period
WriteDWord(BaseAddress+232, 40000);

hThread = CreateThread(NULL, // no security attributes
 0, // use default stack size
 (LPTHREAD_START_ROUTINE) ThreadFunc, // thread function
 NULL, // no thread function argument
 0, // use default creation flags
 &IDThread); // returns thread identifier
if (hThread == NULL)
 ErrorAction();

The body of the thread is presented below.

DWORD WINAPI ThreadFunc(VOID)
{
 HANDLE eventHandle;
 DWORD val;
 int IntrSource;
 int iAux;

 // Set priority of the current process and thread - optional
 SetPriorityClass(GetCurrentProcess(),
 REALTIME_PRIORITY_CLASS);
 SetThreadPriority(GetCurrentThread(),
 THREAD_PRIORITY_TIME_CRITICAL);
 // Clear all interrupt requests and set active interrupt sources
 iAux = ReadWord(BaseAddress + 0xE0);
 WriteWord(BaseAddress + 0xE0, 0);
 WriteWord(BaseAddress + 0xE0, iAux);

 for(;;) {
 if(IntrAttach(BoardNo + 1, &eventHandle) < 0) AfxMessageBox("Interrupt Attach Error");//ErrorAction();
 __try {
 val = WaitForSingleObject(eventHandle, 10000);
 }
 __except(EXCEPTION_EXECUTE_HANDLER) {
 ;
 }

INTECO

RT-DAC4/PCI - User’s manual page 22

 if((val == WAIT_TIMEOUT) || (val==WAIT_FAILED))
 AfxMessageBox("__try Timeout");
 else {
 if(IntrResponse(BoardNo + 1) < 0)
 AfxMessageBox("Intrrupt Response Error");;
 ResetEvent(eventHandle);
 IntrSource = ReadWord(BaseAddress + 0xE4) & 0x1F;
 if(IntrSource & 0x10) { // Software interrupt
 AfxMessageBox("Software Interrupt Source");
 iAux = ReadWord(BaseAddress + 0xE0);
 iAux &= 0xFFEF;
 WriteWord(BaseAddress + 0xE0, iAux); // Clear software intr. request
 iAux |= 0x0010;
 WriteWord(BaseAddress + 0xE0, iAux); // Reinit software interrupt
 }
 if(IntrSource & 0x08) { // Timer interrupt
 AfxMessageBox("Timer Interrupt Source”);
 iAux = ReadWord(BaseAddress + 0xE0);
 iAux &= 0xFFF7;
 WriteWord(BaseAddress + 0xE0, iAux); // Clear timer intr. request
 iAux |= 0x0008;
 WriteWord(BaseAddress + 0xE0, iAux); // Reinit software interrupt
 }
 if(IntrSource & 0x04) { // COS interrupt
 AfxMessageBox ("COS Interrupt Source");
 iAux = ReadWord(BaseAddress + 0xE0);
 iAux &= 0xFFFB;
 WriteWord(BaseAddress + 0xE0, iAux); // Clear COS intr. request
 iAux |= 0x0004;
 WriteWord(BaseAddress + 0xE0, iAux); // Reinit software interrupt
 }
 if(IntrSource & 0x04) { // Ext1
 AfxMessageBox ("External 1 Interrupt Source");
 iAux = ReadWord(BaseAddress + 0xE0);
 iAux &= 0xFFFD;
 WriteWord(BaseAddress + 0xE0, iAux); // Clear Ext1 intr. request
 iAux |= 0x0002;
 WriteWord(BaseAddress + 0xE0, iAux); // Reinit software interrupt
 }
 if(IntrSource & 0x04) { // Ext0
 AfxMessageBox ("External 0 Interrupt Source");
 iAux = ReadWord(BaseAddress + 0xE0);
 iAux &= 0xFFFE;
 WriteWord(BaseAddress + 0xE0, iAux); // Clear Ext0 intr. request
 iAux |= 0x0001;
 WriteWord(BaseAddress + 0xE0, iAux); // Reinit software interrupt
 }
 }
 }
 return 0;
}

Interrupt functions

I/O space byte offset: 224
Function: reads/writes interrupt flags.
Used bits: D7 – value of 1 enables local interrupt generation. Value of 0 disables,

D6 – not used
D5 – value of 1 generates local software interrupt,
D4 – value of 1 enables local software interrupt generation. If local software
interrupt occurred previously setting this bit to 0 clears the interrupt request,
D3 – value of 1 enables local timer interrupt generation. If local timer
interrupt occurred previously setting this bit to 0 clears the interrupt request,
D2 – value of 1 enables local COS interrupt generation. If local software
COS occurred previously setting this bit to 0 clears the interrupt request,
D1 – value of 1 enables local interrupt generation requested by the external
ExtInt1 signal. If local ExtInt1 interrupt occurred previously setting this bit to
0 clears the interrupt request,
D0 – value of 1 enables local interrupt generation requested by the external
ExtInt0 signal. If local ExtInt0 interrupt occurred previously setting this bit to
0 clears the interrupt request.

INTECO

RT-DAC4/PCI - User’s manual page 23

C API function name: RtdacPCI_ReadIntrFlags
RtdacPCI_WriteIntrFlags

I/O space byte offset: 228

Function: reads interrupt status.
Used bits: D11 – value of 1 indicates that local interrupt has occurred,

D10 – not used
D9 – value of 1 indicates that the software interrupt request is queued,
D8 – value of 1 indicates that the timer interrupt request is queued,
D7 – value of 1 indicates that the COS interrupt request is queued,
D6 – value of 1 indicates that the ExtInt1 interrupt request is queued,
D5 – value of 1 indicates that the ExtInt0 interrupt request is queued,
D4 – value of 1 indicates that the current PCI interrupt is caused by the
software interrupt source,
D3 – value of 1 indicates that the current PCI interrupt is caused by the timer
interrupt source,
D2 – value of 1 indicates that the current PCI interrupt is caused by the COS
interrupt source,
D1 – value of 1 indicates that the current PCI interrupt is caused by the
ExtInt1 interrupt source,
D0 – value of 1 indicates that the current PCI interrupt is caused by the
ExtInt0 interrupt source,

C API function name: RtdacPCI_ ReadIntrStatus

I/O space byte offset: 232

Function: read/write period of the interrupt timer.
Used bits: D27-D0 – define the period of the interrupt timer. The period is

defined in units equal to 25ns.
C API function name: RtdacPCI_WriteIntrPeriod

RtdacPCI_ReadIntrPeriod

I/O space byte offset: 236

Function: read/write COS mask.
Used bits: D15-D0 – defines which inputs from the CN3 connector are used to detect

change-of-state and to generate the interrupt. Value of 1 means that the
respective signal is applied to generate the COS interrupt. Value of 0 means
that the respective signal does not influence the COS block.

C API function name: RtdacPCI_ReadIntrCOSMask
RtdacPCI_WriteIntrCOSMask

I/O space byte offset: 240

Function: read/write COS mask.
Used bits: D15-D0 – defines which inputs from the CN4 connector are used to detect

change-of-state and to generate the interrupt. Value of 1 means that the
respective signal is applied to generate the COS interrupt. Value of 0 means
that the respective signal does not influence the COS block.

C API function name: RtdacPCI_ReadIntrCOSMask
RtdacPCI_WriteIntrCOSMask

I/O space byte offset: 244

Function: read COS before state.
Used bits: D31-D0 – reads which state at the CN3 and the CN4 connectors was active

immediately before the COS generation. The D31-D16 bits store the state of
the CN4 and the D15-D0 bits store the state of the CN3 connector.

C API function name: RtdacPCI_ReadIntrCOSBefore

I/O space byte offset: 248

Function: read COS after state.

INTECO

RT-DAC4/PCI - User’s manual page 24

Used bits: D31-D0 – reads which state at the CN3 and the CN4 connectors was active
immediately after the COS generation. The D31-D16 bits store the state of
the CN4 and the D15-D0 bits store the state of the CN3 connector.

C API function name: RtdacPCI_ReadIntrCOSAfter

INTECO

RT-DAC4/PCI - User’s manual page 25

7. LOW-LEVEL API FUNCTIONS
It was developed the DLL library which contain functions used to detect the RT-DAC4/PCI location and to

allow the access to the board resources. The library is distributed as three files: RTDACAPI.DLL,
RTDACAPI.LIB and RTDACAPI.H. The first file contains the functions. The second file is used during static
DLL linking. The last file contains the declarations of exported functions.

The API DLL allows to detect the location of the RT-DAC4/PCI boards available in the system and allows
access to the I/O address space. The access to the I/O address space is prohibited in the Windows
NT/2000/XP operating systems and the API DLL allows to exceed these limitations. A special kernel-mode
device driver called by the API DLL functions performs operations which are forbidden in user-mode
applications.

The API interface contains the following functions (see the RTDACAPI.H file):
int NoOfDetectedBoards(void);

Returns the number of RT-DAC4/PCI boards detected in the system.

int BoardLocation(int BoardIdx,
 int *BusNo, int *SlotNo,
 int *VendorID,
 int *DeviceID,
 int *BaseAddress);

Determines the bus number, slot number, vendor ID, device ID and base address of the
RT-DAC4/PCI board given by the BoardIdx input argument. The BoardIdx can vary from 1 to the
number of detected boards returned by the NoOfDetectedBoards function. The function returns 0 value if
succeed or –1 if failed.

int BoardLocationEx(int BoardIdx,
 int *BusNo, int *SlotNo,
 int *VendorID,
 int *DeviceID,
 int *BaseAddress,
 int *PCIBAR1);

Determines the bus number, slot number, vendor ID, device ID, base address and the PCIBAR1
location of the RT-DAC4/PCI board given by the BoardIdx input argument. The BoardIdx can vary from
1 to the number of detected boards returned by the NoOfDetectedBoards function. The function returns 0
value if succeed or –1 if failed.

int WriteByte(int port, int value);
unsigned short WriteWord(int port, unsigned int value);
unsigned long WriteDWord(int port, unsigned int value);

Output the value byte (WriteByte), word(WriteWord), or double word (WriteDWord) at the port port. The
functions return the data output.

int ReadByte(int port);
unsigned int ReadWord(int port);
unsigned long ReadDWord(int port);

Input a byte (ReadByte), a word (ReadWord), or a double word (ReadDWord) from the port port.

int IntrInit(int BoardIdx)

Interrupt initialisation function. The BoardIdx can vary from 1 to the number of detected boards returned
by the NoOfDetectedBoards function and defines which board initialises interrupts. The function enables
interrupt generation and defines that the interrupt trigger is rising edge of the LINTi1 local bus signal.
The function returns 0 value if succeed or –1 otherwise.

int IntrAttach(int BoardIdx, HANDLE *eventHandle)

INTECO

RT-DAC4/PCI - User’s manual page 26

This function attaches the object eventHandle to the interrupt handling procedure. The BoardIdx can vary
from 1 to the number of detected boards returned by the NoOfDetectedBoards function and defines which
board is considered. The function enables interrupt generation and defines that the interrupt trigger is
rising edge of the LINTi1 local bus signal. The function returns 0 value if succeed r a negative value
otherwise.

int IntrResponse(int BoardIdx)

This function clears the internal PLX9030 interrupt request flag. It is called by the user interrupt
handling procedure. The BoardIdx can vary from 1 to the number of detected boards returned by the
NoOfDetectedBoards function and defines which board is considered. The function returns 0 value if
succeed or -1 value otherwise.

IntrClose(int BoardIdx)

This function terminates interrupt generation by the board. The BoardIdx can vary from 1 to the number
of detected boards returned by the NoOfDetectedBoards function and defines which board is considered.
The function returns 0 value if succeed or -1 otherwise.

INTECO

RT-DAC4/PCI - User’s manual page 27

8. XILINX FPGA CHIP PROGRAMMING

The RT-DAC4/PCI board is equipped with a XILINX FPGA chip. The user can reprogram the logic design of
the FPGA chip. A new logic can perform quite different functions. For example the user can build a new logic,
which can perform:

• 32 PWM outputs, or
• hardware implemented digital filters, or
• hardware implemented FFT algorithm, or
• fast data acquisition from A/D converters, or
• fast analog signal generators using D/A converters, or
• data encryption and decryption, or
• finite state machines, or
• microprocessor cores and
• much more.

The design of a new logic requires a more extended RT-DAC4/PCI board description. The description is
included in the “RT-DAC4/PCI FPGA Programming Guide” distributed separately.

