

INTECO
Krakow, POLAND, inteco@kki.krakow.pl

www.inteco.com.pl

RT-DAC/USB2

I/O Board
Board version 1.03

User’s Manual

Kraków 2010

Revision History

Version Date Resp. Description
1.0 2010-09-30 KK First release
1.1 2010-10-25 KK Text improvements

InTeCo

RT-DAC/USB2 - User’s Manual page 1

Table of contents

1. GENERAL INFORMATION... 4

1.1 SPECIFICATION... 4
1.2 BOARD ARCHITECTURE.. 6

2. BOARD INSTALLATION ... 7

3. DRIVER INSTALLATION.. 8

4. CONNECTOR PIN ASSIGNMENT.. 10

5. USB ACCESS FUNCTIONS .. 14

5.1 GENERAL DESCRIPTION OF SOFTWARE INTERFACES... 14
5.1.1 C interface ... 14
5.1.2 .NET interface.. 15
5.1.3 MATLAB/Simulink interface.. 16

5.2 USB FUNCTIONS.. 18
5.2.1 C interface ... 18
5.2.2 .NET interface.. 21

5.3 VERSION MANAGEMENT... 23
5.3.1 Logic version ... 23
5.3.2 Application name... 23
5.3.3 Synthesis date .. 23
5.3.4 Number of channels... 24
5.3.5 Example ... 24

5.4 OPERATING MODE OF THE SHARED OUTPUT SIGNALS... 26
5.5 DIGITAL I/O ... 27

5.5.1 Direction.. 27
5.5.2 Input... 28
5.5.3 Output.. 28
5.5.4 Example ... 29

5.6 COUNTER/TIMER .. 31
5.6.1 Mode.. 31
5.6.2 Reset .. 32
5.6.3 Counter .. 32
5.6.4 Example ... 33

5.7 PWM ... 35
5.7.1 Mode.. 36
5.7.2 Prescaler.. 36
5.7.3 Width ... 36
5.7.4 Example ... 37

5.8 ENCODER... 39
5.8.1 Reset .. 40
5.8.2 IdxActive.. 40
5.8.3 IdxInvert .. 41
5.8.4 Counter .. 41
5.8.5 Example ... 41

5.9 FREQUENCY METER.. 43
5.9.1 EnableBlock... 44
5.9.2 SwHwGateStartFlag.. 44
5.9.3 SwStart... 45
5.9.4 StartInv .. 45
5.9.5 SwGate... 45
5.9.6 GateInv .. 45
5.9.7 InputInv.. 46

InTeCo

RT-DAC/USB2 - User’s Manual page 2

5.9.8 GateMode .. 46
5.9.9 InfiniteFlag.. 46
5.9.10 Mode.. 47
5.9.11 Timer ... 47
5.9.12 Ready ... 47
5.9.13 Counter .. 48
5.9.14 Result ... 48
5.9.15 Example ... 48

5.10 CHRONOMETER.. 51
5.10.1 EnableBlock... 52
5.10.2 TriggerMode.. 53
5.10.3 EnableGate.. 53
5.10.4 InvertStartStop... 53
5.10.5 InvertStop .. 53
5.10.6 InvertGate.. 54
5.10.7 ArmMeasurement... 54
5.10.8 NextMeasurement .. 54
5.10.9 Armed .. 55
5.10.10 Pending.. 55
5.10.11 Ready ... 55
5.10.12 ClkDivider ... 55
5.10.13 Counter .. 56
5.10.14 Result ... 56
5.10.15 Example ... 57

5.11 A/D CONVERSION... 59
5.11.1 Gain ... 59
5.11.2 Result ... 59
5.11.3 Example ... 60

5.12 D/A CONVERSION... 62
5.12.1 D/A control .. 62
5.12.2 Example ... 63

6. TEST APPLICATIONS.. 64

6.1 DIGITAL IO TEST.. 64
6.2 TIMER/COUNTER TEST.. 65
6.3 PWM TEST... 66
6.4 ENCODER TEST... 67
6.5 FREQUENCY METER TEST... 67
6.6 CHRONOMETER TEST.. 69
6.7 A/D CONVERSION TEST.. 71
6.8 D/A CONVERSION TEST.. 72

InTeCo

RT-DAC/USB2 - User’s Manual page 3

NOTES

MATLAB, Simulink, RTW and RTWT are registered trademarks of The MathWorks, Inc.
Windows 95/98/NT/2000/XP are registered trademarks of Microsoft Corporation

Copyright INTECO 2010. All rights reserved.

InTeCo

RT-DAC/USB2 - User’s Manual page 4

1. GENERAL INFORMATION

The RT-DAC/USB2 is a multifunction analog and digital I/O board dedicated to real-time data acquisition
and control in the Windows 95/98/NT/2000/XP environments. The board contains a Xilinx FPGA chip. All
boards are built as the OMNI version. It means the boards can be reconfigured to introduce a new
functionality of all inputs and outputs without any hardware modification.
The default configuration of the FPGA chip accepts signals from incremental encoders and generates PWM
outputs, typical for mechatronic control applications and is equipped with the general purpose digital
input/outputs (GPIO), A/D and D/A converters, timers, counters, frequency meters and chronometers.
The RT-DAC/USB2 board is distributed in two versions:

• analog and digital (RT-DAC/USB2) and
• digital only (RT-DAC/USB2-D).

This manual contains description for the both versions. In the case, if any facility of the board relates to one
version only, this fact is clearly marked.

1.1 Specification

Analog section (not available in the RT-DAC/USB2-D version)

Analog Inputs

Channels: 16 single-ended, multiplexed
Resolution: 12 bit
Input ranges: ±10V, programmable gain (x1, x2, x4, x8, x16)
Conversion time: 5.4 µs
Trigger: all the A/D channels are scanned automatically when USB host

requires data
Reference voltage: on-board

Analog Outputs

Channels: 4
Resolution: 12 bit / 14 bit
Output range: ± 10V, ± 5V
Settling time: 10 µs (to 0.01%)
Reference voltage: on-board

Digital section

 (version 1.03)

Digital Input/ Output

Channels: 26 bi-directional, direction setting; 8 channels shared with
PWM outputs; some inputs shared with counter, timer,
chronometer and frequency meter inputs

Direction: bi-directional, individually software programmable
Input voltage: V IH = 2.0V÷3.6V, VIL = - 0.5V÷0.8V
Output voltage: VOH = 2.4V (min), VOL = 0.4V (max)
Output current: 2mA per channel
Standard: LVTTL

Digital Timer/Counter

32 bit timer / counter : 2 channels, counts internal clock signal or external
impulses . External pulse duration: min 50ns

InTeCo

RT-DAC/USB2 - User’s Manual page 5

PWM Outputs

Channels: 4
Resolution: 8/12 bits (software selected)
Base frequency: programmable, initial 16-bits divider

Incremental encoders

Channels: 4
Output: 32 bit counter
Index Software configured. 2 modes: with and without index,

selectable active level of the index signal

USB features
USB 2.0 hi-speed specification compliant.

InTeCo

RT-DAC/USB2 - User’s Manual page 6

1.2 Board architecture

The block diagram of the RT-DAC/USB2 board is shown in Fig. 1.1. The block diagram of the digital
version is presented in Fig. 1.2.

XILINX

FPGA

USB Bus

USB Interface

digital I/O

USB /FPGA

bridge

PWM

frequency meter

chronometer

Clock reference
signal

Configuration

EEPROM

timer/counter

Programmable gain
16 channels

A/D converter

D/A converters D/A buffers

encoders

Fig. 1.1. General block diagram of the RT-DAC/USB2 board

XILINX

FPGA

USB Bus

USB Interface

digital I/O

USB /FPGA

bridge

PWM

frequency meter

chronometer

Clock reference
signal

Configuration

EEPROM

timer/counter

encoders

Fig. 1.2. General block diagram of the RT-DAC/USB2-D board

The board is equipped with the 12-bit successive approximation A/D converters that give the 5 mV resolution
within the input range ±10V. A finer resolution can be achieved by the gain definition using digitally
programmable analog amplifier. The A/D conversion time of the RT-DAC/USB2 board is equal to 5.4 µs.
The board contains four 12-bits D/A converters connected to four analog output channels (optionally 14-bit
D/A converters are available). The output voltage of the channels is ± 10V. Each analog output channel can
sink up to 10 mA.

Reprogramming the XILINX FPGA chip at the boards can change functions of the board. The information
and specification how to reprogram XILINX FPGA is not included in this guide. Please, relate to
RTDAC/USB2 FPGA Programming Guide distributed by INTECO separately.

InTeCo

RT-DAC/USB2 - User’s Manual page 7

2. BOARD INSTALLATION

The RT-DAC/USB2 setup contains:

• RT-DAC/USB2 board,
• Two 40-pin ribbon cables (only one cable when the digital version is distributed),
• USB cable,
• CD containing a software and e-manuals,
• terminal wiring board (optional),
• 9V-12V DC / 4W stabilised power supply (optional). The plug dimensions are given in Fig. 2.2.

The layout of the RT-DAC/USB2 board is presented in Fig. 2.1

RT-DAC/USB2

LEDs:
Power
Programming enable
Ready

USB socket

Power socket

On/Off

CN2 and CN1
40-pins connectors
(CN1 not visible)

Fig. 2.1. The layout of the RT-DAC/USB2 board

 φ 5.5 mm

min 13 mm

metal part

Fig. 2.2. The plug of the DC power
supply

The CN1 connector is not visible at the Fig. 2.1 because it is placed below the CN2 connector. The digital
version of the board is equipped with the CN1 connector only. The CN2 connector contains pins connected to
A/D inputs and D/A outputs only.
The Power signalling LED is emitting light when the On/Off switch is on, Ready LED indicates that the
communication between the RT-DAC/USB2 board and computer is running and Programming Enable LED
is emitting light when the board is ready to be programmed.

To install the board:

• install driver for the board (see below or CD:\DRIVER\readme*.txt),
• install RT-DAC/USB2 testing applications
• optionally install the RT-CON package,
• connect the board to the computer using the included USB cable,
• connect the national version of the DC 9V-12V stabilised power supply (not included). 9V DC

voltage is recommended.
• test the board (see section 6).

InTeCo

RT-DAC/USB2 - User’s Manual page 8

3. DRIVER INSTALLATION

The driver for RT-DAC/USB2 board has to be installed. The user with administrator privileges must

install the drivers for Windows 2000 and Windows XP.

Windows 2000/XP installation

1. Start Microsoft Windows 2000/XP
2. Connect the RT-DAC/USB2 device and turn power ON
3. System detects a new USB device
4. Select the file CD:\driver\w2k_xp\cyusb.inf and then press OK

If the driver is not installed and the RT-DAC/USB2 device is connected to the PC it appears as

unknown device at the list of the devices in the Device Manager (see Fig. 3.1).

Fig. 3.1. Device list with an unknown device

Fig. 3.2. Update driver option

Press the right mouse button at the Unknown device item and select the Update Driver Software item

(see Fig. 3.2). Select the Browse my computer for driver software option (DO NOT select the Search
automatically for updated driver software) and select the driver location as given in Fig. 3.3and Fig. 3.4.

Fig. 3.3. Browse the computer option

Fig. 3.4. Select the driver

Windows displays the security warning caused by the uncertified driver. Please force the driver to be

installed (see Fig. 3.5). Finally the confirmation of the successful driver installation is given as presented in
Fig. 3.6.

InTeCo

RT-DAC/USB2 - User’s Manual page 9

Fig. 3.5. Windows security warning

Fig. 3.6. Confirmation of the successful installation

The 64-bit versions of Windows require that all drivers are digitally certified, which the driver for
the RT_DAC/USB2 is not. A user needs to reboot the Windows PC and press F8 to show the boot
option list. The loading/installing unsigned drivers option has to be selected to allow installation of
the driver.

When the RT-DAC/USB2 is properly installed it is visible in the Device Manager at the list of devices

in the Universal Serial Bus controllers category as the InTeCo RT-DAC/USB2 entry (see Fig. 3.7).

Fig. 3.7. RT-DAC/USB2 device at the list of installed devices

InTeCo

RT-DAC/USB2 - User’s Manual page 10

4. CONNECTOR PIN ASSIGNMENT

The digital version the RT-DAC/USB2D board is equipped with one 40-pin I/O connector CN1. The pin
assignment of the connector is shown in Table 1 and Fig. 4.1.

Table 1. RT-DAC/USB2 I/O CN1 pin assignment

CN1 Pin
No

Power
supply

Digital
I/O

Counter PWM Encoder
Frequency

meter
Chronometer

1 DIO0 ENC0A Fr0G Ch0G

2 GND

3 DIO1 ENC0B Fr0St Ch0St

4 GND

5 DIO2 PWM0 ENC0I Fr0I Ch0StSt

6 GND

7 DIO3 ENC1A Fr1G Ch1G

8 GND

9 DIO4 ENC1B Fr1St Ch1St

10 GND

11 DIO5 PWM1 ENC1I Fr1I Ch1StSt

12 GND

13 DIO6 ENC2A Fr2G Ch2G

14 GND

15 DIO7 ENC2B Fr2St Ch2St

16 GND

17 DIO8 PWM2 ENC2I Fr2I Ch2StSt

18 GND

19 DIO9 ENC3A Fr3G Ch3G

20 GND

21 DIO10 ENC3B Fr3St Ch3St

22 DIO11 PWM3 ENC3I Fr3I Ch3StSt

23 DIO12 ENC4A Fr4G Ch4G

24 DIO13 ENC4B Fr4St Ch4St

25 DIO14 PWM4 ENC4I Fr4I Ch4StSt

26 DIO15 ENC5A Fr5G Ch5G

27 DIO16 ENC5B Fr5St Ch5St

28 DIO17 PWM5 ENC5I Fr5I Ch5StSt

29 DIO18 ENC6A Fr6G Ch6G

30 DIO19 ENC6B Fr6St Ch6St

31 DIO20 PWM6 ENC6I Fr6I Ch6StSt

32 DIO21 ENC7A Fr7G Ch7G

33 DIO22 ENC7B Fr7St Ch7St

34 DIO23 PWM7 ENC7I Fr7I Ch7StSt

35 DIO24 CNT 0

36 DIO25 CNT 1

37 GND

38 GND

39 +5.0 V

40 +3.3 V

InTeCo

RT-DAC/USB2 - User’s Manual page 11

GND
GND

GND

GND
GND

GND
GND
GND
GND
GND

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

GND
+5V

GND
+3.3V

23
21

25

29
27

31
33
35
37
39

24
22

26

30
28

32
34
36
38
40

Ch0StSt Fr0I ENC0I PWM0 DIO2
Ch0St Fr0St ENC0B DIO1
Ch0G Fr0G ENC0A DIO0

Ch1StSt Fr1I ENC1I PWM1 DIO5
Ch1St Fr1St ENC1B DIO4
Ch1G Fr1G ENC1A DIO3

Ch2StSt Fr2I ENC2I PWM2 DIO8
Ch2St Fr2St ENC2B DIO7
Ch2G Fr2G ENC2A DIO6

Ch3StSt Fr3I ENC3I PWM3 DIO11 Ch3St Fr3St ENC3B DIO10
Ch3G Fr3G ENC3A DIO9

Ch4G Fr4G ENC4A DIO12 Ch4St Fr4St ENC4B DIO13
Ch4StSt Fr4I ENC4I PWM4 DIO14

Ch5StSt Fr5I ENC5I PWM5 DIO17 Ch5St Fr5St ENC5B DIO16
Ch5G Fr5G ENC5A DIO15

Ch6G Fr6G ENC6A DIO18 Ch6St Fr6St ENC6B DIO19
Ch6StSt Fr6I ENC6I PWM6 DIO20

Ch7StSt Fr7I ENC7I PWM7 DIO23
Ch7G Fr7G ENC7A DIO21

 DIO25
Ch7St Fr7St ENC7B DIO22
 DIO24 CNT1 CNT0

Power
Chronometer

Frequency meter

Encoder
PWM

Counter

Digital I/O

Fig. 4.1. RT-DAC/USB2 I/O CN1 connector

The analog and digital version of the RT-DAC/USB2 board is equipped additionally with the CN2 40-pin
connector. The pin assignment of the connector is shown in Fig. 4.2.

GND
GND

GND

GND
GND

GND
GND
GND
GND
GND

A/I 11
A/I 10

A/I 12

A/I 14
A/I 13

A/I 15

A/O 0
A/O 1
A/O 2
A/O 3

23
21

25

29
27

31
33
35
37
39

24
22

26

30
28

32
34
36
38
40

GND
GND

GND

GND
GND

GND
GND
GND
GND
GND

A/I 1
A/I 0

A/I 2

A/I 4
A/I 3

A/I 5

3
1

5

9
7

11
13
15
17
19

4
2

6

10
8

12
14
16
18
20

A/I 6

A/I 8
A/I 7

A/I 9

Ground

Analog input

Analog output

Fig. 4.2. RT-DAC/USB2 I/O CN2 connector

The RT-DAC/USB2 board is equipped with 16 multiplexed analog inputs located at the CN2 connector.
They are named from A/I 0 down to A/I 15. The output of the analog multiplexer is connected to the input of
the digital programmable analog amplifier. The board is also equipped with four 12-bit D/A converters.
These outputs are named from A/O 0 down to A/O 3.
Only 26 pins at the CN1 connector are used as general-purpose digital I/O signals (DIO0 to DIO25). The
remaining pins are the ground and power (GND, +5V, +3.3V). The general purpose digital I/O signals can be
individually configured to be either the input or output.
As the number of general-purpose digital I/O signals is limited, all of them are shared with the signals of the
specialized blocks. The specialized blocks are implemented as the modules in the on-board FPGA structure.

InTeCo

RT-DAC/USB2 - User’s Manual page 12

It means that the functions of the specialized block are hardware-implemented. The specialized blocks
are:

• PWM generators – there are eight PWM blocks. The outputs are marked: PWM0, PWM1, PWM2,
PWM3, PWM4, PWM5, PWM6 and PWM7,

• incremental encoders – the device contains eight incremental encoder channels. Each channel
requires three input signals – wave A (named from ENC0_A down to ENC7_A), wave B (from
ENC0_B to ENC7_B) and index (from ENC0_I to ENC7_I),

• counters – there are two counters available. The input signals are marked CNT0 and CNT1
respectively,

• frequency meters – RT-DAC/USB2 contains eight such blocks. The signals are named from
Fr0_G, Fr0_St and Fr0_I to Fr7_G, Fr7_St and Fr7_I,

• eight chronometer blocks – the signals are named from Ch0_G, Ch0_St and Ch0_StSt down to
Ch7_G, Ch7_St and Ch7_StSt.

There are two kinds of specialized blocks:
• the first kind of the specialized blocks contains digital output signals (PWM blocks). In this case

the appropriate pins of the CN1 connector can operate as the general purpose digital I/O signals or
as the output of the specialized block. The operating mode is determined by a mode configuration
register (CN1 Pin Mode Register). If they operate as general purpose digital I/Os their directions
and states are determined by the software. If they operate as the outputs of the specialized blocks
the state of the output is controlled by the PWM block. The states of the output signals can be read
by the software (the software can check the PWM output),

• the second kind of the specialized blocks contains only the digital input signals (the incremental
encoders, counters, frequency meters and chronometers). In this case it is not necessary to select
the operating mode of the block signals. If the appropriate general purpose I/O signals are
configured to be the inputs then their states can be read by the software and simultaneously the
signals excite the specialized block (see Fig. 4.3). If the shared general purpose I/O signals are
configured to be outputs their states can be set by the software and simultaneously the signals
excite the specialized block (see Fig. 4.4). This operating mode can be applied for testing of the
specialized blocks – for example the encoder can be excited and read in a software manner. This
testing strategy is not significant during common device applications. It may be very useful when
one wants to design and test his own FPGA blocks (see “USB Device XILINX Programming
Guide”)

 FPGA

ENC0_A / DIO0
Encoder
Block

Read encoder

Read digital input

FPGA Pin

Fig. 4.3. The shared FPGA pin configured as the input

InTeCo

RT-DAC/USB2 - User’s Manual page 13

 FPGA

ENC0_A / DIO0
Encoder
Block

Read encoder

Set digital output

FPGA Pin

Fig. 4.4. The shared FPGA pin configured as the output

InTeCo

RT-DAC/USB2 - User’s Manual page 14

5. USB ACCESS FUNCTIONS

The software for the RT-DAC/USB2 device is developed as:

• C language procedures,
• .NET C# properties and methods,
• Simulink blocks and S-functions.

Test applications for the functions of the RT-DAC/USB2 device are available as well. The applications are
described in section 6.

5.1 General description of software interfaces

The software platforms applied to access the RT-DAC/USB2 I/Os apply some basic items used by the
interface functions. This section contains the general description of the common items. The detailed
description is presented in the following subsections related to the different types of I/O channels.

Communication with the board is performed by transferring a data frame. A dedicated binary buffer placed at
the board, in the FPGA chip, contains all information of the board. In this buffer are kept measurements and
all settings of the board. The FPGA logic manages the binary buffer. The data stored in the buffer can be read
from the buffer as well as data can be written to the buffer by transferring data frames over USB link. The
API functions hide the details of the structure of the binary buffer and allow easy access to the features of the
RT-DAC/USB2 device

The communication with the board is realized by two main functions:

• the first reads binary buffer from USB board
• the second writes data to the binary buffer at USB board.

Using these two functions one can maintain all features of the USB board.

5.1.1 C interface

The RT-DAC/USB2 access functions are defined in the rtdacusb2.c and the rtdacusb2.h files. These files
contain the API macro definitions and C API functions referred to the description of the board functions.
In programs, which use API functions, the cyapi.h file is applied. To build an executable the cyapi.lib library
has to be linked. Both the cyapi.h and cyapi.lib files come from the Cypress Semiconductor company.

From the computer side the communication buffer is visible as a sequence of the words however the
communication functions access the buffer as a nested structure of C language. The data type definition
applied to communicate with the device has the following form:

typedef struct {
 unsigned int LogicVersion;
 char ApplicationName[7];
 unsigned long LogicDate;
 unsigned int NoOfChannels[12];
 unsigned int CN1PinMode;
 unsigned int CN1Direction;
 unsigned int CN1Output;
 unsigned int CN1Input;
 PWMType PWM[NO_OF_PWM];
 EncoderType Encoder[NO_OF_ENCODER];
 TmrCntType TmrCnt[NO_OF_TMRCNT];
 GeneratorType Generator[NO_OF_GENERATOR];
 ChronoType Chrono[NO_OF_CHRONO];
 FreqMType FreqM[NO_OF_FREQM];
 ADType AD[NO_OF_AD];
 unsigned int DA[NO_OF_DA];
} RTDACUSB2BufferType;

InTeCo

RT-DAC/USB2 - User’s Manual page 15

The name of the data type is RTDACUSB2BufferType . The type contains some fields. The detailed
description of the fields is given in the following sections.

5.1.2 .NET interface

The class diagram of the .NET interface is given in Fig. 5.1. The main class is RTDACUSB2_0103. It
creates interface to version 1.03 of the RT-DAC/USB2 device. The class contains one constructor and two
methods – one for reading and one for sending data over the USB link. The names of the methods are
ReadUSBFrame and SendUSBFrame respectively.

Fig. 5.1. .NET class diagram

The RTDACUSB2_0103 class derives from RTDACUSB2. The RTDACUSB2 class is responsible for
transferring data over the USB link.
The RTDACUSB2 class derives from the RTDACBoard class. This class manages the features of the I/O
channels of the board. Each I/O channel type contains his own class definition (see Fig. 5.2). The properties
of the classes from Fig. 5.2 are described in the following sections.

Fig. 5.2. Class types encapsulated in the RTDACBoard class

InTeCo

RT-DAC/USB2 - User’s Manual page 16

5.1.3 MATLAB/Simulink interface

A data frame is send to or read from the RT-DAC/USB2 board by the Simulink interface C-source code
S-functions (and respective mex-files).
The S-function block that read data from the board is shown in Fig. 5.3. It contains 46 outputs – most of them
are vector lines. The first output contains the status code of the read data frame operation. The remaining
outputs contain all configuration data, setups and measurements from all I/O channels read from the board.
The details of the output ports are described in the following sections.

Fig. 5.3. Read S-function block

The S-function block that sends data to the board is shown in Fig. 5.4. It contains single output and 35 inputs.
Most of the inputs are vector lines. The output contains the status code of the send operation. The remaining
inputs contain all setups send to the board. The details of the input ports are described in the following
sections.

Fig. 5.4. Send S-function block

InTeCo

RT-DAC/USB2 - User’s Manual page 17

The parameters of the S-function USB Read and USB Send blocks are shown in Fig. 5.5. The windows
contain the names of the S-functions and two parameters.
The first parameter is a serial number of the RT-DAC/USB2 board the block communicates with. The serial
number is assigned to each RT-DAC/USB2 device during the assembling process and is unique for each
RT-DAC/USB device. The serial numbers are applied to select a board in the case when more than one
RT-DAC/USB2 is connected to the computer. The serial numbers are positive integer values. If the first
parameter is negative (-1 value in Fig. 5.5) it means that only a single RT-DAC/USB2 board is connected to
the computer and the serial numbers are not applied to distinguish the boards.
The second parameter is the sampling period of the block.

Fig. 5.5. Interfaces to the read and send S-function blocks

The S-function blocks shown in Fig. 5.3 and Fig. 5.4 contain a lot of inputs and outputs. The most frequently
used features of the board are as follows: general-purpose digital I/Os, encoders, PWM outputs, D/A and A/D
converters. A simplified version of the read and send S-functions can be also applied (see Fig. 5.6).

Fig. 5.6. Simplified read and send S-function blocks

InTeCo

RT-DAC/USB2 - User’s Manual page 18

5.2 USB functions

There is a common sequence of operations required to communicate with the RT-DAC/USB2 board:

• the first one has to open the communication channel. The RT-DAC/USB2 devices are distinguished by
its serial number. Usually the device serial number is the argument of the open functions. The device
serial number is not necessary only when a single RT-DAC/USB2 device is connected to the computer,

• a contents of the data buffer is read. It gives access to the current context of the device. Reading of the
buffer allows to get measurements and set-ups,

• if ones requires to change the state of the RT-DAC/USB2 then the appropriate elements of the buffer
are set. Each element of the buffer corresponds to a certain function of the board – usually only a few of
them are changed. Writing to the buffer sets a new state of the device,

• closing the USB communication finishes the current session.

Each function returns an integer value. If the value is negative it means that the function failed. Zero or
positive returned value indicates a successful function execution.

5.2.1 C interface

The C interface contains the following functions.

int USB2NumOfDevices(void);

DESCRIPTION
The function returns the number of the RT-DAC/USB2 devices connected to the computer..

ARGUMENTS
None

RETURNED VALUE
If successful the function returns the number of the RT-DAC/USB2 device connected to the
computer. It returns zero if none RT-DAC/USB2 can be found. In the case of an error it returns a
negative error code.

int USB2Open(void);

DESCRIPTION
The function opens the RT-DAC/USB2 device connected to the computer. The function opens the
first device from the list of devices connected to the computer. As it can not distinguish
RT-DAC/USB2 devices it should be called if only a single RT-DAC/USB2 is applied.

ARGUMENTS
None

RETURNED VALUE
If successful the function returns the handler to the opened RT-DAC/USB2 device. The handler is a
non-negative integer value. The handler is the first argument of the RT-DAC/USB2 communication
functions.
In the case of an error it returns a negative error code.

InTeCo

RT-DAC/USB2 - User’s Manual page 19

int USB2OpenBySerialNo(int SerialNo);

DESCRIPTION
The function opens the RT-DAC/USB2 device connected to the computer identified by the serial
number. The serial number is a positive integer value assigned to each RT-DAC/USB2 device.

ARGUMENTS
SerialNo – serial number of the RT-DAC/USB2 device.

RETURNED VALUE
IF successful the function returns the handler to the opened RT-DAC/USB2 device. The handler is a
non-negative integer value.
In the case of an error it returns a negative error code.

int USB2Close(int Idx);

DESCRIPTION
The function closes the connected RT-DAC/USB2 device. It is called when all operations with the
device are finished.

ARGUMENTS
Idx – the handler to the RT-DAC/USB2 unit. The handler is returned by the USB2Open or

USB2OpenBySerialNo functions.

RETURNED VALUE
If successful then the zero value is returned. Otherwise it returns a negative error code.

int CommandSend_0103(int Idx, RTDACUSB2BufferType *pBufferToSend);

DESCRIPTION
The function sends the data buffer to the RT-DAC/USB2 device. When the buffer is sent the new
values of the board outputs and set-ups are immediately applied.

ARGUMENTS
Idx – the handler to the RT-DAC/USB2 unit to which new data are sent. The handler is returned by

the USB2Open or USB2OpenBySerialNo functions.
pBufferToSend – pointer to the structure that contains the new data sent to the RT-DAC/USB2

board. The pointer points to the structure of the RTDACUSB2BufferType type.

RETURNED VALUE
If successful then the zero value is returned. Otherwise it returns a negative error code.

int CommandRead_0103(int Idx, RTDACUSB2BufferType *pBufferToRead);

DESCRIPTION
The function reads a data buffer from the RT-DAC/USB2 device. After the read operation the buffer
contains the current state of the board.

ARGUMENTS
Idx – the handler to the RT-DAC/USB2 unit applied to read the data buffer. The handler is returned

by the USB2Open or USB2OpenBySerialNo functions.
pBufferToSend – pointer to the structure that contains the data read from the RT-DAC/USB2

board. The pointer points to the structure of the RTDACUSB2BufferType type.

RETURNED VALUE
If successful then the zero value is returned. Otherwise it returns a negative error code.

InTeCo

RT-DAC/USB2 - User’s Manual page 20

int USB2LastError(void);

DESCRIPTION
The function returns an error code of the last operation.

ARGUMENTS
None.

RETURNED VALUE
Returns an error code. The codes are given in the following table.

Table 2. Error codes.

Error code value Description

0 Successful operation
-1 Too many opened RT-DAC/USB2 devices
-2 Can not find any RT-DAC/USB2 device
-3 Invalid board index
-4 Can not access USB transfer endpoint
-5 Can not access USB NULL endpoint
-6 Endpoint are not closed
-7 Invalid device pointer
-8 Invalid synchronous OUT transfer
-9 Invalid synchronous IN transfer
-10 Invalid synchronous JTAG OUT transfer
-11 Invalid synchronous JTAG IN transfer
-12 Can not find device serial number

char *USB2LastErrorMsg(void);

DESCRIPTION
The function returns the pointer to a string that describes the status of the last operation

ARGUMENTS
None.

RETURNED VALUE
Returns the pointer to a string. The error codes and the strings pointed by the pointer and returned by
the function are given in the following table.

Table 3. Error codes and respective strings.

Error code value Description

0 RTDAC_OK
-1 RTDAC_TOO_MANY_USB_DEVICES
-2 RTDAC_CAN_NOT_FIND_USB_DEVICE
-3 RTDAC_TOO_HIGH_BOARD_INDEX
-4 RTDAC_CAN_NOT_ACCESS_ENDPOINTS
-5 RTDAC_CAN_NOT_ACCESS_NULL_ENDPOINT
-6 RTDAC_ENDPOINTS_NOT_CLOSED
-7 RTDAC_INVALIED_DEVICE_POINTER
-8 RTDAC_INVALIED_SYNCHRONOUS_OUT_TRANSFER
-9 RTDAC_INVALIED_SYNCHRONOUS_IN_TRANSFER
-10 RTDAC_INVALIED_SYNCHR_JTAG_OUT_TRANSFER
-11 RTDAC_INVALIED_SYNCHR_JTAG_IN_TRANSFER
-12 RTDAC_CAN_NOT_FIND_SERIAL_NUMBER

InTeCo

RT-DAC/USB2 - User’s Manual page 21

5.2.2 .NET interface

The .NET interface consists of the definition of the RTDACUSB2_0103 class. The class contains a simple
constructor and a few methods.

RTDACUSB2_0103 class

DESCRIPTION
The class RTDACUSB2_0103 creates the main interface to the RT-DAC/USB2 board equipped
with FPGA configuration number 103. It contains a simple constructor and a few methods.

CONSTRUCTOR
The constructior does not require any input arguments and is activated by the command:

RTDACUSB2_0103 brd = new RTDACUSB2_0103();

The command creates the brd object of the RTDACUSB2_0103 type.

int NumOfDevices()

DESCRIPTION
The method of the RTDACUSB2_0103 class. Returns the number of RT-DAC/USB2 devices
connected to the computer.
The method can be called before opening a communication channel with any RT-DAC/USB2 unit.

ARGUMENTS
None.

RETURNED VALUE
A number of the RT-DAC/USB2 devices connected to the computer is returned.

int OpenBySerialNumber(int SerialNumber)

DESCRIPTION
The method of the RTDACUSB2_0103 class. Opens the communication with the RT-DAC/USB2
with the serial number given by the input argument.

ARGUMENTS
Serial number of the RT-DAC/USB2 device given as the integer number. Each RT-DAC/USB2
board contains his own unique positive integer serial number. The serial number are applied to
distinguish the boards if multiple boards are used simultaneously.
The SerialNumber argument can be negative in the case when only a single board is connected
to the computer. In such a case the methods opens the communication regardless the real serial
number of the connected RT-DAC/USB2 unit.

RETURNED VALUE
If successful the method returns zero. A negative value indicates an error. The following error codes
are available:

-2 - can not find any RT-DAC/USB2 unit connected to the computer,
-12 - can not find an RT-DAC/USB2 with the given serial number.

InTeCo

RT-DAC/USB2 - User’s Manual page 22

int Open()

DESCRIPTION
The method of the RTDACUSB2_0103 class. Opens the communication with the RT-DAC/USB2
board. Can be called when only a single board is connected to the computer.

ARGUMENTS
None.

RETURNED VALUE
If successful the method returns zero. The (–2) value indicates that any RT-DAC/USB2 unit
connected to the computer can not be found.

int ReadUSBFrame()

DESCRIPTION
The method of the RTDACUSB2_0103 class. Reads a single frame from the RT-DAC/USB2 board.
Data from the frame are applied to update the values of the properties of the RTDACUSB2_0103
class. After this method is called the properties contain up-to-date values of setups and
measurements.

ARGUMENTS
None.

RETURNED VALUE
If successful the method returns zero. A negative value indicates an error.

int SendUSBFrame()

DESCRIPTION
The method of the RTDACUSB2_0103 class. The properties of the RTDACUSB2_0103 class are
packed into a data frame sent to the RT-DAC/USB2 board.

ARGUMENTS
None.

RETURNED VALUE
If successful the method returns zero. A negative value indicates an error.

InTeCo

RT-DAC/USB2 - User’s Manual page 23

5.3 Version management

The RT-DAC/USB2 devices contain some data applied to distinguish the configurations of the on-board
FPGA chips. The data are: version of the FPGA configuration, name of the FPGA configuration, synthesis
date of the FPGA configuration and the numbers of I/O channels implemented in FPGA.
The data are accessible after a successful read operation. In C language the CommandRead_0103 function
has to be called. Data are included in a variable of RTDACUSB2BufferType type. In .NET environment
the ReadUSBFrame method has to be activated. Data are visible as properties of an object of
RTDACUSB2_0103 type. In Simulink a block that contains the read S-function block has to be run. Data are
accessible at the outputs of the Simulink read S-function block.
All the version management fields are read-only.

5.3.1 Logic version

C interface unsigned int LogicVersion
.NET interface uint LogicVersion
Simulink interface Version

DESCRIPTION
The field contains a number of the logic version applied in the FPGA chip. The version is coded as
hexadecimal 16-bit number.

5.3.2 Application name

C interface char ApplicationName[7]
.NET interface string ApplicationName
Simulink interface Not available

DESCRIPTION
The field contains a string that describes the application type of the RT-DAC/USB2 board. The
string contains 6 characters.

5.3.3 Synthesis date

C interface unsigned int LogicDate
.NET interface string SynthesisDate
Simulink interface Date

DESCRIPTION
The field contains the synthesis date of the FPGA configuration. The date is coded as hexadecimal
32-bit number in the form YYYYMMDD.

InTeCo

RT-DAC/USB2 - User’s Manual page 24

5.3.4 Number of channels

C interface unsigned int NoOfChannels[12]
.NET interface uint Configuration.NoOfPWM

uint Configuration.NoOfTmrCnt
uint Configuration.NoOfEncoderI
uint Configuration.NoOfChrono
uint Configuration.NoOfFreqM

Simulink interface Not available

DESCRIPTION
The field contains the number of available I/O channels.
In C interface the elements of the NoOfChannels array contain the following data:

NoOfChannels[0] – number of PWM blocks,
NoOfChannels[2] – number of encoder blocks,
NoOfChannels[5] – number of timer/counter blocks,
NoOfChannels[7] – number of frequency meter blocks,
NoOfChannels[8] – number of chronometer blocks,

The remaining elements of the NoOfChannels array are reserved for future use.
In the .NET interface the number of channels are stored as respected properties.

5.3.5 Example

Check if an RT-DAC/USB2 board is connected. Open the board and read some configuration data. It is
assumed that only a single RT-DAC/USB2 is connected, so the open operation does not require as the
argument the serial number of the board.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

// Detect the number of connected RT-DAC/USB2 devic es
NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
// Open the RT-DAC/USB2 device
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open an RT-DAC/USB2 device\n");
 return;
}
// Read the data buffer
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n") ;
 return;
}
printf("Number of detected RT-DAC/USB2 devices: %d "
 "Logic version: %04X / %s",
 NoOfDetectedUSBDevices, RTDACUSBBuffer.Logic Version,
 RTDACUSBBuffer.ApplicationName);

// Close the device

InTeCo

RT-DAC/USB2 - User’s Manual page 25

USB2Close(BoardIdx);

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();

// Detect the number of connected RT-DAC/USB2 devic es
if (brd.NumOfDevices() < 1)
{
 MessageBox.Show("Can not find any RT-DAC/USB2 d evice.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}

// Open the RT-DAC/USB2 device
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}
// Read the data buffer
if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}
String sAux;
sAux = "Number of detected RT-DAC/USB2 devices: " +
 String.Format("{0:D}", brd.NumOfDevices()) + "\n" +
 "Logic version: " +
 String.Format("{0:X}", brd.LogicVersion) + @" / " +
 brd.ApplicationName;
MessageBox.Show(sAux, "DI/O example",
 MessageBoxButtons.OK.);
// Closing not necessary !!!
// Done automatically when the object destroyed

InTeCo

RT-DAC/USB2 - User’s Manual page 26

5.4 Operating mode of the shared output signals

Some pins are shared between the digital I/O lines and outputs of the PWM blocks. When a shared pin works
as an output it must exist a method to determine whether the pin is controlled by a general purpose digital I/O
or by a PWM block. For this reason the CN1PinMode field is applied. The field sets the operation mode of
the shared pins.
In the .NET interface the pin mode data are stored in the dedicated DigitalIOClass class.

C interface unsigned int CN1PinMode
.NET interface UInt32 DigitalIO.CN1PinMode
Simulink interface CN1PinMode output of the read S-function

SetCN1PinMode input of the send S-function

DESCRIPTION
The field sets/means a mode of the shared pins. Data determine the source of the output signals:
DIO2/PWM0, DIO5/PWM1, DIO8/PWM2, DIO11/PWM3, DIO14/PWM4, DIO17/PWM5,
DIO20/PWM6 and DIO23/PWM7. If a bit is set to zero it means the pin is defined as the output of
the general purpose digital I/O. If a bit is equal to “1” the corresponding pin is defined as the output
of a PWM block.
This feature of the board is coded as 32-bit double word but only eight bits are used as it is shown in
the following tables.

Bit No 7 6 5 4 3 2 1 0

- -
DIO5

PWM1
- -

DIO2
PWM0

- -

Bit No 15 14 13 12 11 10 9 8

-
DIO14
PWM4

- -
DIO11
PWM3

- -
DIO8

PWM2

Bit No 23 22 21 20 19 18 17 16
 DIO23

PWM7
- -

DIO20
PWM6

- -
DIO17
PWM5

-

Bit No 31 30 29 28 27 26 25 24
 - - - - - - - -

InTeCo

RT-DAC/USB2 - User’s Manual page 27

5.5 Digital I/O

The RT-DAC/USB2 board contains 26 general-purpose digital input/output lines named as DIO0,
DIO2,…,DIO25. The digital I/O lines are connected to pins of the CN1 connector. All digital I/O signals are
shared with inputs or outputs of PWM, encoder, counter, frequency meter and chronometer blocks. To use
digital signals as general-purpose I/Os the respective pin mode bit (see section 5.4) has to be set to ‘0’.
The general purpose digital I/O signals can be individually configured to become either inputs or outputs.
The direction of each line can be set independently using the field CN1Direction.

The configuration of the general-purpose digital I/Os is shown in the following figure. Each signal is
associated with the dedicated tri-state buffer. If a pin at the CN1 connector is configured to be input its state
can be read by a program. If a pin is an output its state can be set. As well a program can read the state of the
output signals. Such a read operations allow to verify if the states assigned to the output I/Os are really
present as the board outputs.

CN1
Pin

CN1Input

CN1Output

CN1Direction

Fig. 5.7. Interfaces to a general-purpose digital I/O signal

In the .NET interface the direction and state of the I/Os are stored in dedicated DigitalIOClass class.

5.5.1 Direction

C interface unsigned int CN1Direction
.NET interface UInt32 DigitalIO.CN1Direction
Simulink interface CN1Direction output of the read S-function

SetCN1Direction input of the send S-function

DESCRIPTION
The field sets/means a direction of the digital I/O signals. If a bit is set to zero it means the pin is
defined as the output. If a bit is equal to “1” the corresponding pin is defined as the input line.
This feature of the board is coded as 32-bit double word but only 26 bits are used as it is shown in
the following tables.

Bit No 7 6 5 4 3 2 1 0
 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1 DIO0

Bit No 15 14 13 12 11 10 9 8
 DIO15 DIO14 DIO13 DIO12 DIO11 DIO10 DIO9 DIO8

Bit No 23 22 21 20 19 18 17 16
 DIO23 DIO22 DIO21 DIO20 DIO19 DIO18 DIO17 DIO16

Bit No 31 30 29 28 27 26 25 24
 - - - - - - DIO25 DIO24

InTeCo

RT-DAC/USB2 - User’s Manual page 28

5.5.2 Input

C interface unsigned int CN1Input
.NET interface UInt32 DigitalIO.CN1Input
Simulink interface CN1Input output of the read S-function

DESCRIPTION
The field contains values of signals at the CN1 connector. It is a read-only value.
For input signals it reads the digital inputs. For output signals it reads the real signal values present
at the CN1 connector. If a pin is configured as a PWM output the respective bit relates to the output
state of the PWM block.
This feature of the board is coded as 32-bit double word but only 26 bits are used in the same order
as in the case of direction bits (see section 5.5.1).

5.5.3 Output

C interface unsigned int CN1Output
.NET interface UInt32 DigitalIO.CN1Output
Simulink interface CN1Output output of the read S-function

SetCN1Output input of the send S-function
SetCN1OutputTerminate input of the send S-function

DESCRIPTION
The field contains values applied to excite output buffers. If a pin is defined to be an output the
respective bit from the CN1Output register appears at the CN1 connector.
This feature of the board is coded as 32-bit double word but only 26 bits are used in the same order
as in the case of direction bits (see section 5.5.1).
In Simulink interface in the send S-function there are two inputs related with the digital outputs:
SetCN1Output and SetCN1OutputTerminate . The first one is applied during each sampling
period to update the state of the digital outputs. The second input is used only once – when the
simulation terminates. The value at the SetCN1OutputTerminate are send to the digital
outputs when the execution of the Simulink model terminates.

InTeCo

RT-DAC/USB2 - User’s Manual page 29

5.5.4 Example

Open the RT-DAC/USB2 device which serial number is 14. Set the DIO0-DIO15 lines as outputs. Set
DIO16, DIO17,…,DIO25 as the inputs. Set all output lines to logic state ‘1’ and read all 10 inputs.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

RTDACUSB2BufferType RTDACUSBBuffer;
int BoardIdx;
unsigned int Input;

BoardIdx = USB2OpenBySerialNo(14);
if(BoardIdx < 0) {
 printf("Can not open the given RT-DAC/USB2 devi ce\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n") ;
 return;
}
// Set all lines as general purpose inputs/outputs
RTDACUSBBuffer.CN1PinMode = 0;
// Set directions
RTDACUSBBuffer.CN1Direction = 0x3FF0000;
// Set outputs
RTDACUSBBuffer.CN1Output = 0xFFFF ;

if(CommandSend_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not send data to the RT-DAC/USB2 dev ice\n");
 return;
}

// wait ….

if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n") ;
 return;
}
Input = RTDACUSBBuffer.CN1Input;
Input = (Input >> 16) & 0x3FF;

USB2Close(BoardIdx);

InTeCo

RT-DAC/USB2 - User’s Manual page 30

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.OpenBySerialNumber(14) < 0)
{
 MessageBox.Show("Can not open the device.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}
if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}
// Set all lines as general purpose inputs/outputs
brd.DigitalIO.CN1PinMode = 0;
// Set directions
brd.DigitalIO.CN1Direction = 0x3FF0000;
// Set outputs
brd.DigitalIO.CN1Output = 0xFFFF;
if (brd.SendUSBFrame() < 0)
{
 MessageBox.Show("Can not send data frame.", "DI /O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}

// Wait

if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.",
 "DI/O example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 return;
}
UInt32 Input = brd.DigitalIO.CN1Input;
Input = (Input >> 16) & 0x3FF;

InTeCo

RT-DAC/USB2 - User’s Manual page 31

5.6 Counter/timer

RT-DAC/USB2 contains two 32-bit timer/counter channels. Both counter/timer channels can operate either
in the counter or timer modes. In the timer mode the timer/counter channels count pulses of the internal board
clock. The frequency of the clock corresponds to the board version (20 MHz is the default frequency value).
In the counter mode the timer/counter channels count external pulses respectively from the CNT0 and CNT1
inputs. In the timer mode the blocks does not use any external signals.
In the counter mode the counter inputs are named: DIO24/CNT0 and DIO25/CNT1 and are located at the
CN1 connector at pins 35 and 36. The inputs of the counters CTN0 and CNT1 are shared with the general
purpose digital I/Os DIO24 and DIO25. If the DIO24/CNT0 or DIO25/CNT1 signals are defined to be the
inputs, their states can be read (typically as the digital inputs) and simultaneously they excite the respective
counter block. If the signals are set to be outputs, their states are determined by software (typically as the
digital outputs) and simultaneously they excite the respective counter block (this operating mode can be
applied to test the blocks in a programming manner).
The configuration of the timer/counter block is shown below. The Mode flag selects between counter and
time modes. The Reset flag is applied to reset the counter. 32-bit counter stores a number of the internal
clock periods or a number of the external pulses (the rising edges of the pulses are counted).

Cnt

I/O signal

Reset

Mode

 Parameter

Counter 40 MHz

Internal Clock

0

1

Fig. 5.8. Configuration of the timer/counter block

In the C language interface the features of the channels are controlled by the TmrCntType structure. The
main structure contains the array:
 TmrCntType TmrCnt[2];
that is applied to communicate with the timer/counter blocks
In the .NET interface the state of the timer/counter blocks are described in the dedicated TmrCntClass
class.

5.6.1 Mode

C interface unsigned int Mode
.NET interface TmrCntClass.ModeState Mode
Simulink interface TmrCntMode output of the read S-function

SetTmrCntMode input of the send S-function

DESCRIPTION
The field sets/means the operating mode of the timer/counter.
In the C and Simulink interfaces the value equal to 0 sets/means the counter mode; the value equal
to 1 means the timer mode.
In the .NET interface the value equal to CounterMode sets/means the counter mode; TimerMode
means that the block operates as a timer.

InTeCo

RT-DAC/USB2 - User’s Manual page 32

5.6.2 Reset

C interface unsigned int Reset
.NET interface TmrCntClass.ResetState Reset
Simulink interface TmrCntReset output of the read S-function

SetTmrCntReset input of the send S-function

DESCRIPTION
In the C and Simulink interfaces the value equal to 1 sets/means that the counter remains in reset
state; 0 means the working mode.
In the .NET interface the value On sets/means that the counter is reset; Off means the working
mode.
The Counter field remains equal to 0 until the Reset field is equal to 1.

5.6.3 Counter

C interface unsigned int Counter
.NET interface uint Counter
Simulink interface TmrCntCounter output of the read S-function

DESCRIPTION
32-bit unsigned integer value of the counter. The field is read-only.

InTeCo

RT-DAC/USB2 - User’s Manual page 33

5.6.4 Example

Set the first channel as the timer and the second channel as the counter. Reset both channels, start counting
and read the values of both channels.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n");
 return;
}

RTDACUSBBuffer.TmrCnt[0].Mode = 1; // First channel as timer
RTDACUSBBuffer.TmrCnt[1].Mode = 0; // Second channe l as counter

// Reset both channels
RTDACUSBBuffer.TmrCnt[0].Reset = RTDACUSBBuffer.Tmr Cnt[1].Reset = 1;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

// Start counting
RTDACUSBBuffer.TmrCnt[0].Reset = RTDACUSBBuffer.Tmr Cnt[1].Reset = 0;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

// wait ….

CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
printf(" Timer: %d, Counter: %d\n",
 RTDACUSBBuffer.TmrCnt[0].Counter,
 RTDACUSBBuffer.TmrCnt[1].Counter);

USB2Close(BoardIdx);

InTeCo

RT-DAC/USB2 - User’s Manual page 34

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "Tmr/ Cnt example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}
if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.", "Tmr/ Cnt example",
 MessageBoxButtons.OK, MessageBox Icon.Exclamation);
 return;
}
// Set modes
brd.TmrCnt(0).Mode = TmrCntClass.ModeState.TimerMod e;
brd.TmrCnt(1).Mode = TmrCntClass.ModeState.CounterM ode;

// Reset both channels
brd.TmrCnt(0).Reset = TmrCntClass.ResetState.On;
brd.TmrCnt(1).Reset = TmrCntClass.ResetState.On;
if (brd.SendUSBFrame() < 0)
{
 MessageBox.Show("Can not send data frame.", "Tmr/ Cnt example",
 MessageBoxButtons.OK, MessageBox Icon.Exclamation);
 return;
}

// Start counting
brd.TmrCnt(0).Reset = TmrCntClass.ResetState.Off;
brd.TmrCnt(1).Reset = TmrCntClass.ResetState.Off;
if (brd.SendUSBFrame() < 0)
{
 MessageBox.Show("Can not send data frame.", "Tmr/ Cnt example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}

// wait ….

if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.", "Tmr/ Cnt example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}
String sAux;
sAux = "Timer: " +
 String.Format("{0:D}", brd.TmrCnt(0).Counter) + "\n" +
 "Counter: " +
 String.Format("{0:X}", brd.TmrCnt(1).Counter);
MessageBox.Show(sAux, "Tmr/Cnt example", MessageBox Buttons.OK);

InTeCo

RT-DAC/USB2 - User’s Manual page 35

5.7 PWM

The RT-DAC/USB2 board includes eight output PWM channels named: PWM0, PWM1, PWM2, PWM3,
PWM4, PWM5, PWM6 and PWM7, located at the CN1 connector at pins: 5, 11, 17, 22, 25, 28, 31 and 34.
These pins are shared between PWM outputs and eight general purpose digital I/Os. The PWM operating
mode is determined by the contents of the direction register and the mode configuration register. The
direction register must set the PWM signals to become the outputs. The pin mode configuration register
determines whether the signals are associated with the specialized PWM blocks or operate as the general
purpose digital IOs. In the first case the states of the outputs are constructed by the PWM block. In the
second case the state of the outputs are defined by the software.
The basic PWM period and the period of the “H” state (width) of each channel are selected independently.
The operating principle of the PWM channels is illustrated in Fig. 5.9. The input basic frequency of the
PWM channels is set to the default 20MHz value. This frequency is divided by the counter (called the
prescaler), which creates the PWM basic period. The basic period wave excites the 8 or 12-bit counter. The
output of the counter is compared to the 8 or 12-bit width of the “H” state. The valid prescaler value is a
number taken from the range [0 - 65535]. The PWM counters and the “H” state duration registers can operate
in either 8 or 12-bit modes. The 8-bit mode allows PWM to operate in a high speed and the 12-bit mode
allows to achieve higher accuracy of the output.

PWM

I/O signal

Prescaler

Mode

 Parameter

Divider

40 MHz

Internal Clock

Mod 255

Mod 4095

Comparator

Width

0

1

Fig. 5.9. Block diagram of the PWM generator

In the 12-bit mode a single PWM period contains 4095 impulses of the output prescaler counter. The duration
of the ‘H’ state is set by a number from 0 to 4095. In the 8-bit mode a PWM period contains 255 impulses of
the output prescaler. The duration of the ‘H’ state is set by a number from 0 to 255.
The frequency of the PWM wave is given by the formulas:

255)1(∗+
=

prescaler

f
f basic

PWM for 8-bit mode

4095)1(∗+
=

prescaler

f
f basic

PWM for 12-bit mode

where basicf equals to 20MHz.

In the C language interface the features of the PWM channels are controlled by the PWMType structure. The
main structure of the RTDACUSB2BufferType type contains the array:
 PWMType PWM[8];
that is applied to communicate with the PWM blocks.
In the .NET interface the state of the PWM blocks are described in the dedicated PWMClass class.

InTeCo

RT-DAC/USB2 - User’s Manual page 36

5.7.1 Mode

C interface unsigned int Mode
.NET interface PWMClass.PWMMode Mode
Simulink interface PWMMode output of the read S-function

SetPWMMode input of the send S-function

DESCRIPTION
The field sets/means the operating mode of the timer/counter.
In the C and Simulink interfaces the value equals to “0” indicates the 8-bit PWM mode. If this
integer value is equal to “1” then the 12-bit PWM mode is selected.
In the .NET interface the value equal to PWM8BitMode indicates 8-bit mode; PWM12BitMode
indicates that the block operates in 12-bit mode.

5.7.2 Prescaler

C interface unsigned int Prescaler
.NET interface uint Prescaler
Simulink interface PWMPrescaler output of the read S-function

SetPWMPrescaler input of the send S-function

DESCRIPTION
16-bit value that defines the prescaler parameter. The internal clock reference is divided by
(prescaler+1) to generate the basic PWM period.
The maximum frequency of the PWM output is approximately equal to 156kHz and is generated in
the 8-bit mode when the prescaler is equal to 0. The minimum frequency of the PWM output is
approximately equal to 0.15Hz and is generated in the 12-bit mode when the prescaler is equal to
65535.

5.7.3 Width

C interface unsigned int Width
.NET interface uint Width
Simulink interface PWMWidth output of the read S-function

SetPWMWidth input of the send S-function
SetPWMWidthTerminate input of the send S-function

DESCRIPTION
The 12-bit unsigned value sets the duration of the “H” state in each PWM period. When the PWM
channel operates in the 8-bit mode only the least significant 8-bits are applied.
In the Simulink there are two inputs of the S-functions applied to set the duration of the “H” state in
each PWM period. The first one, SetPWMWidth , is applied during each sampling period. The
second input, SetPWMWidthTerminate , is used when the simulation terminates.

InTeCo

RT-DAC/USB2 - User’s Manual page 37

5.7.4 Example

For the first PWM channel select the 8-bit operating mode, set the frequency to 300 Hz and set the duty cycle
to 25% (the “H” state lasts 25% of the PWM period). For the second PWM channel select the 12-bit
operating mode, set the frequency to 10 Hz and set the duty cycle to 75%.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n");
 return;
}

// Switch pin mode to allow PWM outputs for PWM0 an d PWM1
RTDACUSBBuffer.CN1PinMode |= 0x0000024;

// Set respective pins to be outputs
RTDACUSBBuffer.CN1Direction &= 0x0FFFFFDB;

RTDACUSBBuffer.PWM[0].Mode = 0; // 8-bit PWM mode
RTDACUSBBuffer.PWM[1].Mode = 1; // 12-bit PWM mode

// The prescaler value of 522 defines the 300Hz fre quency
// The width equal to 64 means 25% duty cycle (64 i s 25% of 256)
RTDACUSBBuffer.PWM[0].Prescaler = 522;
RTDACUSBBuffer.PWM[0].Width = 64;

// The prescaler value of 60 defines the 10Hz frequ ency
// The width equal to 3072 means 75% duty cycle (30 72 is 75% of 4096)
RTDACUSBBuffer.PWM [1].Prescaler = 60;
RTDACUSBBuffer.PWM [1].Width = 3072;

// Start PWM output generation
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

USB2Close(BoardIdx);

InTeCo

RT-DAC/USB2 - User’s Manual page 38

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "PWM example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}
if (brd.ReadUSBFrame() < 0)
{
 MessageBox.Show("Can not read data frame.", " PWM example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}
// Switch pin mode to allow PWM outputs for PWM0 an d PWM1
brd.DigitalIO.CN1PinMode |= 0x0000024;
// Set respective pins to be outputs
brd.DigitalIO.CN1Direction &= 0x0FFFFFDB;

brd.PWM(0).Mode = PWMClass.PWMMode.PWM8BitMode;
brd.PWM(1).Mode = PWMClass.PWMMode.PWM12BitMode;

// The prescaler value of 522 defines the 300Hz fre quency
// The width equal to 64 means 25% duty cycle (64 i s 25% of 256)
brd.PWM(0).Prescaler = 522;
brd.PWM(0).Width = 64;

// The prescaler value of 60 defines the 10Hz frequ ency
// The width equal to 3072 means 75% duty cycle (30 72 is 75% of 4096)
brd.PWM(1).Prescaler = 60;
brd.PWM(1).Width = 3072;

// Start PWM output generation
if (brd.SendUSBFrame() < 0)
{
 MessageBox.Show("Can not send data frame.", " PWM example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}

InTeCo

RT-DAC/USB2 - User’s Manual page 39

5.8 Encoder

RT-DAC/USB2 includes eight 32-bit incremental quadrature encoder channels. Each channel counts the
changes of two input waves and optionally applies the input index signal to reset the encoder counter. The
relation between the changes of the A and B waves and the changes of the counter value are illustrated in Fig.
5.10.

Wave A

Wave B

+1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 Counter Change

Fig. 5.10. Operation of the quadrature encoder counter

The initial value of each encoder counter can be set to zero in a programmable way or using the active index
signal. Encoders can work in two modes: with or without index signal. The software activates and deactivates
the index signals and sets the active levels of the index signals as well. The structure of the encoder blocks is
given in Fig. 5.11.

Pulse

Direction

Enc_A

Enc_B

Enc_I

I/O signal

Encoder Interface

Reset

IdxActive

IdxInvert

 Parameter

Counter

0

1

Fig. 5.11. Structure of the quadrature encoder blocks

Each encoder channel contains three inputs: wave A, wave B and index I. The respective signals are marked
as:

• ENC0_A, ENC0_B and ENC0_I for the first encoder,
• ENC1_A, ENC1_B and ENC1_I for the second encoder,
• ENC2_A, ENC2_B and ENC2_I for the third encoder,
• ENC3_A, ENC3_B and ENC3_I for the fourth encoder,
• ENC4_A, ENC4_B and ENC4_I for the fifth encoder,
• ENC5_A, ENC5_B and ENC5_I for the sixth encoder,
• ENC6_A, ENC6_B and ENC6_I for the seventh encoder and
• ENC7_A, ENC7_B and ENC7_I for the eighth encoder.

All the pins used by the encoder signals are also used by the general purpose digital I/Os. If the encoder
signals are defined to be inputs, their states can be read (typically as the digital inputs) and simultaneously
they excite the respective encoder block. If the signals are set to be outputs, their states are determined by the
software (typically as the digital outputs) and simultaneously they excite the respective encoder block (this
operating mode can be applied to test the blocks in a programming manner).
All encoder channels are assigned to the pins at the CN1 connector and are shared with the general-purpose
digital input/output signals (see Fig. 4.1). If the direction of DI/O’s are set to be the output the appropriate

InTeCo

RT-DAC/USB2 - User’s Manual page 40

pins operate as the digital outputs. Usually the encoder works if the shared pins are set to be inputs. In such a
case they excite the encoder inputs and can be read simultaneously as the digital inputs.

In the C language interface the features of the encoder channels are controlled by the EncoderType
structure. The main structure of the RTDACUSB2BufferType type contains the array:
 EncoderType Encoder[8];
that is applied to communicate with the encoder blocks.
In the .NET interface the state of the encoder blocks are described in EncoderIClass class dedicated to
be an interface to quadrature encoders equipped with the index signal.

5.8.1 Reset

C interface unsigned int Reset
.NET interface ResetState Reset
Simulink interface EncoderReset output of the read S-function

SetEncoderReset input of the send S-function

DESCRIPTION
The field sets/means the reset state of the block. If the block remains in the reset state the counter is
equal to zero.
In the C and Simulink interfaces the value equal to “1” indicates reset of the block counter. If this
integer value is equal to “0” the block traces the A and B inputs and changes the counter value.
In the .NET interface the value equal to On indicates reset state; Off indicates that the block
counts impulses.

5.8.2 IdxActive

C interface unsigned int IdxAvtive
.NET interface IdxActiveState IdxActive
Simulink interface EncoderIdxActive output of the read S-function

SetEncodeIdxActive input of the send S-function

DESCRIPTION
This flag activates the encoder index signal. When the index signal is active the active level of the
external ENCx_I signal resets the encoder counter.
In the C and Simulink interfaces the value equal to “1” activates the index input signal. If this
integer value is equal to “0” the external ENCx_I signal is not applied to reset the encoder counter.
In the .NET interface the value equal to On indicates active index input; Off indicates that the
index input is deactivated.

InTeCo

RT-DAC/USB2 - User’s Manual page 41

5.8.3 IdxInvert

C interface unsigned int IdxInvert
.NET interface IdxActiveState IdxInvert
Simulink interface EncoderIdxInvert output of the read S-function

SetEncodeIdxInvert input of the send S-function

DESCRIPTION
This flag determines the active level of the index input.

In the C and Simulink interfaces the value equal to “0” determines that the “1” level of the index
signal is active. If this integer value is equal to “1” the active level of the ENCx_I signal is “0”.
In the .NET interface the value equal to On indicates that the active level of the ENCx_I signal is
“0”.; Off indicates that “1” level is active.
In fact the reset signal generated from the index input is always ‘1’ and the IdxInvert is applied to
invert the input (see Fig. 5.11).

5.8.4 Counter

C interface long int Counter
.NET interface uint Counter
Simulink interface EncoderCounter output of the read S-function

DESCRIPTION
32-bit value of the encoder counter. This field is read-only.

5.8.5 Example

Reset the ENC2 encoder, activate the index input, start counting and read the encoder counter.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;
int Result;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n");
 return;
}

// Activate index and reset the encoder counter
RTDACUSBBuffer.Encoder[2].IdxActive = 1;

InTeCo

RT-DAC/USB2 - User’s Manual page 42

RTDACUSBBuffer.Encoder[2].IdxInvert = 0;
RTDACUSBBuffer.Encoder[2].Reset = 1;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

// Start counting – disable reset signal
RTDACUSBBuffer.Encoder[2].Reset = 0;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

// wait ….

CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
Result = RTDACUSBBuffer.Encoder[2].Counter;
printf("Encoder value %d\n", Result);

USB2Close(BoardIdx);

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "Enco der example",
 MessageBoxButtons.OK, MessageBoxI con.Exclamation);
 return;
}
brd.ReadUSBFrame();

// Activate index and reset the encoder counter
brd.EncoderI(2).IdxActive = EncoderIClass.IdxActive State.On;
brd.EncoderI(2).IdxInvert = EncoderIClass.IdxInvert State.Off;
brd.EncoderI(2).Reset = EncoderIClass.ResetState.On ;
brd.SendUSBFrame();

// Start counting – disable reset signal
brd.EncoderI(2).Reset = EncoderIClass.ResetState.Of f;
brd.SendUSBFrame();

// wait ….

brd.ReadUSBFrame();
String sAux;
sAux = "Enc2 counter: " +
 String.Format("{0:D}", brd.EncoderI(2).Count er);
MessageBox.Show(sAux, "Encoder example", MessageBox Buttons.OK);

InTeCo

RT-DAC/USB2 - User’s Manual page 43

5.9 Frequency meter

The RT-DAC/USB2 board includes eight frequency meter blocks. The blocks are applied to measure number
of external pulses within a given counting period. The operation principle is presented in Fig. 5.12. A
measurement can be started by a program or by an external input. The measurements can be gated by an
external signal.

Reference frequency

Counting period

Input signal

Counted impulses
Result: 12

Fig. 5.12. Principle of the frequency operating mode

Each block uses three external input signals (x is a number from 0 to 7 and means the number of the block):

• FrxI – input signal; the block counts pulses from this input,
• FrxSt – external start counting signal,
• FrxG – external gate signal.

The algorithm of the frequency meter block can be described as follow:

1. the block operates only if the Enable parameter is ‘1’; if this parameter is ‘0’ the Ready and the
Pending flags are set to low. The Pending flag is an internal parameter of the block and can not be
accessible from outside,

2. if the SwHwGateStart flag is set to ‘0’ the Start and Gate signals are equal to SwStart and SwGate
parameters respectively (it means that the software is the source of the SwStart and SwGate signals);
if the SwHwGateStart flag is set to ‘1’ the Start and Gate signals are equal to Frx_St and Frx_G
inputs,

3. if the GateInv parameter is set to ‘1’ the Gate signal is inverted,
4. if the StartInv parameter is set to ‘1’ the Start signal is inverted,
5. if the InputInv parameter is set to ‘1’ the Fr_I input signal is inverted,
6. if the block detects a rising edge of the Start signal the following actions are performed: the Ready

parameter is set to ‘0’, the Pending flag is set to ‘1’, the Timer input parameter is used to determine
the duration of the counting period. The resolution of the counting period is 25 ns,

7. the rising edges of the Frx_I signal (or falling edges when the InputInv is set) are counted only when
the Pending flag is ‘1’ or if the InfiniteFlag parameter is set to ‘1’; the number of Frx_I pulses is
stored in the Result counter,

8. the Pending flag is set to ‘0’ when the counting period terminates – it indicates the termination of
the measurement cycle,

9. the Gate input signal can be applied to stop the counting of the pulses of the input signal as well as
to stop the counting of the counting period. If the Gate signal is equal to ‘1’ the Result counter does
not count pulses of the Fr_I input; if the GateMode parameter is set to ‘1’ and the Gate signal is
equal to 1 also the counter which determines the counting period is stopped. Fig. 5.13 illustrates the
influence of the Gate signal when the GateMode parameter is set to ‘0’.

InTeCo

RT-DAC/USB2 - User’s Manual page 44

Reference frequency

Counting period

Input signal

Counted impulses
Result: 4

Gate signal
Active high

Fig. 5.13. Principle of the gate signal

In the C language interface the features of the frequency meter channels are controlled by the FreqMType
structure. The main structure of the RTDACUSB2BufferType type contains the array:
 FreqMType FreqM[8];
that is applied to communicate with the blocks.
In the .NET interface the state of the frequency meter blocks are described in the FreqMClass class.

5.9.1 EnableBlock

C interface unsigned int EnableBlock
.NET interface EnableState Enable
Simulink interface FreqMEnable output of the read S-function

SetFreqMEnable input of the send S-function

DESCRIPTION
The field sets/means the enable state of the block. The block operates (responds to inputs and
parameters) if it is enabled. In disable state the frequency meter block does not react to inputs.
In the C and Simulink interfaces the “1” value enables the block. If this integer value is equal to “0”
the block is disabled.
In the .NET interface the value equal to On indicates enable state; Off disables the block.

5.9.2 SwHwGateStartFlag

C interface unsigned int SwHwGateStartFlag
.NET interface SwHwGateStartState SwHwGateStart
Simulink interface SwHwGateStartFlag output of the read S-function

SetSwHwGateStartFlag input of the send S-function

DESCRIPTION
The field sets the source of the Start and Gate signals. The signals can come from the hardware
inputs FRxSt and FrxG or can be set by the software as the SwStart and SwGate parameters.
In the C and Simulink interfaces the value of “0” indicates the software signal sources. If this integer
value is equal to “1” the block takes the signal from hardware inputs at CN1 connector.
In the .NET interfaces the value equal to Software indicates the software source; Hardware
indicates the hardware signal sources.

InTeCo

RT-DAC/USB2 - User’s Manual page 45

5.9.3 SwStart

C interface unsigned int SwStart
.NET interface SwStartState SwStart
Simulink interface FreqMSwStart output of the read S-function

SetFreqMSwStart input of the send S-function

DESCRIPTION
The field sets the software Start signal. If there is selected the software source of the Start signal
then the rising edge of this parameter starts a measurement.
In C and Simulink the “0” and “1” values are available. A change from “0” to “1” starts a
measurement.
In .NET the On and Off values are available. A change from On to Off starts a measurement.

5.9.4 StartInv

C interface unsigned int StartInv
.NET interface StartInvState StartInv
Simulink interface FreqMStartInv output of the read S-function

SetFreqMStartInv input of the send S-function

DESCRIPTION
The field is applied to invert Start signal (either software or hardware). If the Start signal is inverted
its falling edge starts the measurement.
In C and Simulink the “0” and “1” values are available. The “1” value inverts the Start signal.
In .NET the On and Off values are available. The value On inverts the Start signal.

5.9.5 SwGate

C interface unsigned int SwGate
.NET interface SwGateState SwGate
Simulink interface FreqMSwGate output of the read S-function

SetFreqMSwGate input of the send S-function

DESCRIPTION
The field sets the software Gate signal. If there is selected the software source of the Gate signal
then this signal gates measurements.
In C and Simulink the “0” and “1” values are available. The “1” value gates measurements.
In .NET the On and Off values are available. The On value may be applied to gate measurements.

5.9.6 GateInv

C interface unsigned int GateInv
.NET interface GateInvState GateInv
Simulink interface FreqMGateInv output of the read S-function

SetFreqMGateInv input of the send S-function

DESCRIPTION
The field is applied to invert Gate signal (either software and hardware). If the Gate signal is
inverted its low state gates measurements.
In C and Simulink the “0” and “1” values are available. The “1”value inverts the Gate signal.
In the .NET interface the On and Off values are available. The On value inverts the Gate signal.

InTeCo

RT-DAC/USB2 - User’s Manual page 46

5.9.7 InputInv

C interface unsigned int InputInv
.NET interface InputInvState InputInv
Simulink interface FreqMInputInv output of the read S-function

SetFreqMInputInv input of the send S-function

DESCRIPTION
The field is applied to invert input FrxI signal. If the signal is inverted the block counts falling edges
of the FrxI input.
In C and Simulink the “0” and “1” values are available. The “1” value inverts the FrxI signal.
In .NET the On and Off values are available. The ON value inverts the FrxI signal.

5.9.8 GateMode

C interface unsigned int GateMode
.NET interface GateModeState GateMode
Simulink interface FreqMGateMode output of the read S-function

SetFreqMGateMode input of the send S-function

DESCRIPTION
Selects the gating mode. Two modes are available:

• when the Gate is active only the input signals are not counted. The timer counter operates
until a counting period terminates,

• when the Gate is active the input signals are not counted and as well the timer counter
stops.

In C and Simulink the“0” and “1” values are available. The “0” value stops counting of the FrxI
input signal. If “1” is selected both the input signal and timer pulses are gated.
In .NET the Input and TimeAndInput values are available. The Input value gates only the FrxI
signal. The TimeAndInput value gates the FrxI and timer signals.

5.9.9 InfiniteFlag

C interface unsigned int InfiniteFlag
.NET interface InfiniteFlagState InfiniteFlag
Simulink interface FreqMInfiniteFlag output of the read S-function

SetFreqMInfiniteFlag input of the send S-function

DESCRIPTION
The counting of the input FrxI signal is usually terminated when a counting period terminates. If the
InfiniteFlag is selected the counting of the input signal edges operates in continuous mode.
In C and Simulink the “0” and “1” values are available. The “1” value switches on the continuous
counting.
In .NET the On and Off values are available. The On value switches on the continuous counting.

InTeCo

RT-DAC/USB2 - User’s Manual page 47

5.9.10 Mode

C interface unsigned int Mode
.NET interface ModeState Mode
Simulink interface FreqMMode output of the read S-function

SetFreqMMode input of the send S-function

DESCRIPTION
There are available two measurement modes:

• when the Start trigger edge appears a single measurement is started. During a
measurement period the Result register remains equal to zero and the Counting register
shows the current number of counted pulses. When the measurement terminates (it means
when Ready flag is active) the Counter register is stored in the Result register, so the
Result register contains the result of the measurement,

• the Start trigger start a series of measurements. When a measurement cycle terminates a
new measurement is started immediately. The Result register always contain the result of
the last measurement.

In C and Simulink values of “0” and “1” are available. The value of “0” allows to start a single
measurement. The value of “1” prepares a block to start a series of measurements.
In .NET the Single and Continous values are available which start a single of a series of
measurements respectively.

5.9.11 Timer

C interface unsigned int Timer
.NET interface uint Timer
Simulink interface FreqMTimer output of the read S-function

DESCRIPTION
The 30-bit value that determines the duration of the counting period. The duration of the period is
given as the number of 25ns pulses. This field is read-only.

5.9.12 Ready

C interface unsigned int Ready
.NET interface ReadyState Ready
Simulink interface FreqMReady output of the read S-function

SetFreqMReady input of the send S-function

DESCRIPTION
Determines if the Result register contains the result of the measurements. In single mode it informs
that register is ready to read. In multiple measurements mode it informs that result register contains
a ready to read result of a last measurement.
In C and Simulink values of “0” and “1” indicate not ready to read and ready to read states
respectively.
In .NET the On value indicates ready to read data. The Off value informs that data are not ready jet.

InTeCo

RT-DAC/USB2 - User’s Manual page 48

5.9.13 Counter

C interface unsigned int Counter

DESCRIPTION
32-bit counter that contains the number of currently counted pulses. The field is read-only.

5.9.14 Result

C interface unsigned int Result
.NET interface uint Result
Simulink interface FreqMResult output of the read S-function

DESCRIPTION
32-bit result of the last measurement. The field is read-only.
The field contains valid data only when the Ready flag is set.

5.9.15 Example

Apply the PWM0 output as the inputs signal for the frequency meter channel 0 (Fr0I signal).
Both signals, PWM0 and Fr0I, are located at the same pin of the CN1 connector (pin number 5 - see Table 1).
This pin is shared with the DIO2 general purpose digital signal. To run the test the following steps have to be
performed:

• set parameters of the PWM0 block,
• set the mode of DIO2 to allow the PWM0 generation at the output,
• set the direction of DIO2 as the output,
• set parameters of the Fr0 block. Start a measurement and read the result.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
CommandRead_0103(BoardIdx, &RTDACUSBBuffer);

// Set PWM0 parameters
RTDACUSBBuffer.PWM[0].Mode = 0; // 8-bit PWM mode
RTDACUSBBuffer.PWM[0].Prescaler = 3;
RTDACUSBBuffer.PWM[0].Width = 64;

// Set pin mode and direction to allow PWM0 output
RTDACUSBBuffer.CN1PinMode |= 0x00000004;
RTDACUSBBuffer.CN1Direction &= 0x0FFFFFFB;

InTeCo

RT-DAC/USB2 - User’s Manual page 49

// Setups of the Fr0
RTDACUSBBuffer.FreqM[0].EnableBlock = 1;
RTDACUSBBuffer.FreqM[0].Mode = 0; // Single measur ement
RTDACUSBBuffer.FreqM[0].InfiniteFlag = 0;
RTDACUSBBuffer.FreqM[0].StartInv = 0;
RTDACUSBBuffer.FreqM[0].GateInv = 0;
RTDACUSBBuffer.FreqM[0].SwGate = 0;
RTDACUSBBuffer.FreqM[0].SwHwGateStartFlag = 0; // S oftware START
source
RTDACUSBBuffer.FreqM[0].GateMode = 0;
RTDACUSBBuffer.FreqM[0].InputInv = 0;
RTDACUSBBuffer.FreqM[0].Timer = 400000;

// Send setups and generate rising edge of the soft ware START
RTDACUSBBuffer.FreqM[0].SwStart = 0;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);
RTDACUSBBuffer.FreqM[0].SwStart = 1;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

// Wait for the rumination of the measurement
for(;;) {
 CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
 if(RTDACUSBBuffer.FreqM[0].Ready) break;
}

printf("Result: %d\n", RTDACUSBBuffer.FreqM[0].Resu lt);

// Change PWM frequency and restart the measurement
RTDACUSBBuffer.PWM[0].Prescaler = 7;

RTDACUSBBuffer.FreqM[0].SwStart = 0;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);
RTDACUSBBuffer.FreqM[0].SwStart = 1;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

for(;;) {
 CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
 if(RTDACUSBBuffer.FreqM[0].Ready) break;
}
printf("Result: %d\n", RTDACUSBBuffer.FreqM[0].Resu lt);

USB2Close(BoardIdx);

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "Enco der example",
 MessageBoxButtons.OK, MessageBoxIc on.Exclamation);
 return;
}
brd.ReadUSBFrame();

// Set PWM0 parameters
brd.PWM(0).Mode = PWMClass.PWMMode.PWM8BitMode;
brd.PWM(0).Prescaler = 3;
brd.PWM(0).Width = 64;

// Set pin mode and direction to allow PWM0 output

InTeCo

RT-DAC/USB2 - User’s Manual page 50

brd.DigitalIO.CN1PinMode |= 0x00000004;
brd.DigitalIO.CN1Direction &= 0x0FFFFFFB;

// Setups of the Fr0
brd.FreqM(0).Enable = FreqMClass.EnableState.On;
brd.FreqM(0).Mode = FreqMClass.ModeState.Single;
brd.FreqM(0).InfiniteFlag = FreqMClass.InfiniteFlag State.Off;
brd.FreqM(0).StartInv = FreqMClass.StartInvState.Of f;
brd.FreqM(0).GateInv = FreqMClass.GateInvState.Off;
brd.FreqM(0).SwGate = FreqMClass.SwGateState.Off;
brd.FreqM(0).SwHwGateStart = FreqMClass.SwHwGateSta rtState.Software;
brd.FreqM(0).GateMode = FreqMClass.GateModeState.In put;
brd.FreqM(0).InputInv = FreqMClass.InputInvState.Of f;
brd.FreqM(0).Timer = 400000;

// Send setups and generate rising edge of the soft ware START
brd.FreqM(0).SwStart = FreqMClass.SwStartState.Off;
brd.SendUSBFrame();
brd.FreqM(0).SwStart = FreqMClass.SwStartState.On;
brd.SendUSBFrame();

// Wait for the rumination of the measurement
for (; ;)
{
 brd.ReadUSBFrame();
 if (brd.FreqM(0).Ready == FreqMClass.ReadyState.O n) break;
}
String sAux;
sAux = "Result 1: " +
 String.Format("{0:D}", brd.FreqM(0).Result);
MessageBox.Show(sAux, "Frequency meter example",
 MessageBoxButtons.OK);

// Change PWM frequency and restart the measurement
brd.PWM(0).Prescaler = 7;

brd.FreqM(0).SwStart = FreqMClass.SwStartState.Off;
brd.SendUSBFrame();
brd.FreqM(0).SwStart = FreqMClass.SwStartState.On;
brd.SendUSBFrame();

for (; ;)
{
 brd.ReadUSBFrame();
 if (brd.FreqM(0).Ready == FreqMClass.ReadyState.O n) break;
}
sAux = "Result 2: " +
 String.Format("{0:D}", brd.FreqM(0).Result);
MessageBox.Show(sAux, "Frequency meter example",
 MessageBoxButtons.OK);

InTeCo

RT-DAC/USB2 - User’s Manual page 51

5.10 Chronometer

The chronometer block counts the time span between the start and stop conditions. The resolution of the time
measurement is 25 ns. The block contains two main 32-bit registers: Counter and Result. The Counter
register counts 25ns pulses between the start and stop conditions. This register value changes when the
measurement is pending. When the stop condition occurs the Counter register value is stored into the Result
register. The value of the Result register remains constant until the next measurement terminates.

The chronometer block is implemented as a Finite State Machine (FSM). The FSM contains five states:
Disabled, ReadyToArm, Armed, Counting and Terminated. The state flow is shown below.

NextMeasurement == 1

ArmMeasurement == 1

Disabled

Enable == 0

ReadyToArm

Enable == 0

Armed

Enable == 1

Counting

Trigger == 1
Counting

Terminated

Trigger == 0

Stop == 0

Stop == 1

Next == 0

Counter <= 0
Result <= 0

Result <= Counter

Counter <= 0

Fig. 5.14. State machine of the chronometer block

There are three operating modes of the block determined by the 2-bit Mode parameter. They are described in
the following table.

Table 4. Operating modes of the chronometer block.

Value of the
Mode parameter

Start measurement condition Stop measurement condition

00 Rising edge of the StartStop signal Falling edge of the StartStop signal

01 Rising edge of the StartStop signal Rising edge of the StartStop signal

10 Rising edge of the StartStop signal Rising edge of the Stop signal

11 Not used Not used

The operation algorithm of the chronometer block can be described as follow:

InTeCo

RT-DAC/USB2 - User’s Manual page 52

1. there are three input signals of the chronometer block: StartStop, Stop and Gate. If the StartStopInv
parameter is set to ‘1’ the StartStop signal is inverted. If the StopInv parameter is set to ‘1’ the Stop
input is inverted. If the GateInv parameter flag is set to ‘1’ the Gate signal is inverted,

2. if the Enable input flag is set to 0 the block moves to the Disabled state and remains in this state
until the Enable flag is set to 1. In the Disabled state the Counter and the Result registers are set to
zero. The block changes the state from Disabled to ReadyToArm when the Enable flag changes to 1,

3. the block remains in the ReadyToArm state until the Arm flag is set to 1,
4. in the Armed state the block waits for the start measurement condition. In all measurement modes

the rising edge of the StartStop signal generates start measurement action (if the StartStopInv
parameter is set in fact the falling edge of the StartStop input starts the measurement cycle). In the
Armed state the Counter register is cleared. When the start measurement event occurs the block is
moved to the Counting state,

5. in the Counting state the block counts 25ns pulses until the stop measurement condition occurs. The
number of counted pulses is stored in the Counter register. The counting may be gated. If the Gate
signal is 1 the block does not count reference clock pulses.

6. when the stop measurement condition occurs the state of the block changes to the Terminated and
the Counter register is stored in the Result register. This register can be read to determine the time
span between the start and stop conditions,

7. when the NextMeasurement flag is set the state immediately changes to ReadyToArm. If also the
Arm flag is set a new measurement is armed automatically.

In the basic mode the block counts the pulses of the reference signal which period is equal to 25ns. To allow
measurements of longer time periods the reference frequency can be divided. The 30-bit Divider register
contains the division factor. The reference frequency is divided by the (Divider + 1) value (zero Divider
value means no division).

The board contains eight chronometer blocks. Each block uses three external input signals (x is a number
from 0 to 7 and means the number of the block):

• ChxG – gating signal,
• ChxSt – external Start signal,
• ChxStSt – external Start/Stop signal.

In the C language interface the features of the chronometer channels are controlled by the ChronoType
structure. The main structure of the RTDACUSB2BufferType type contains the array:
 ChronoType Chrono[8]
that is applied to communicate with the blocks.
In the .NET interface the state of the chronometers are described in the ChronoClass class.

5.10.1 EnableBlock

C interface unsigned int EnableBlock
.NET interface EnableState Enable
Simulink interface ChronoEnable output of the read S-function

SetChronoEnable input of the send S-function

DESCRIPTION
The field sets/means the enable state of the block. The block operates (responds to inputs and
parameters) if it is enabled. In disable state the chronometer block does not react to inputs and timer
pulses.
In the C and Simulink interfaces the value of “1” enables the block. If this integer value is equal to
“0” the block is disabled.
In the .NET interfaces the value equal to On indicates enable state; Off disables the block.

InTeCo

RT-DAC/USB2 - User’s Manual page 53

5.10.2 TriggerMode

C interface unsigned int TriggerMode
.NET interface TriggerModeState TriggerMode
Simulink interface ChronoTriggerMode output of the read S-function

SetChronoTriggerMode input of the send S-function

DESCRIPTION
2-bit field that determines the operating condition that starts and terminates the measurement cycle.
In the C and Simulink interfaces the values of the operating modes are given in Table 4.
In the .NET interfaces the values of this field can be set to StartStop_IsH, StartStop_RigingEdges
and StartStop_Stop_RisingEdges that reflect respectively to values 00, 01 and 10 from Table 4.

5.10.3 EnableGate

C interface unsigned int EnableGate
.NET interface EnableGateState EnableGate
Simulink interface ChronoEnableGate output of the read S-function

SetChronoEnableGate input of the send S-function

DESCRIPTION
Flag that enables/disables gate signal. If the flag is set and the ChxG signal is 1 the block does not
count reference clock pulses.
In the C and Simulink interfaces the value of “1” enables gating. If this integer value is equal to “0”
the GATE signal is disabled.
In the .NET interfaces the value equal to On indicates enable state; Off disables gating.

5.10.4 InvertStartStop

C interface unsigned int InvertStartStop
.NET interface InvertStartStopState InvertStartStop
Simulink interface ChronoInvertStartStop output of the read S-function

SetChronoInvertStartStop input of the send S-function

DESCRIPTION
Flag that allows to invert the ChxStSt input. If the flag is active the ChxStSt signal is inverted at the
input of the chronometer block. It evokes the block to start and terminate measurements as a
reaction on falling edges of the ChxStSt signal.
In the C and Simulink interfaces the value of “1” inverts the signal. The value of “0” does not
change the level of the input signal.
In the .NET interfaces the value equal to On indicates inverting of the input; Off disables
inverting.

5.10.5 InvertStop

C interface unsigned int InvertStop
.NET interface InvertStopState InvertStop
Simulink interface ChronoInvertStop output of the read S-function

SetChronoInvertStop input of the send S-function

DESCRIPTION

InTeCo

RT-DAC/USB2 - User’s Manual page 54

The flag that allows to invert the ChxSt input. If the flag is active the ChxSt signal is inverted at the
input of the chronometer block. It evokes the block terminate measurements as a reaction on falling
edges of the ChxSt signal.
In the C and Simulink interfaces the “1” value inverts the signal. The “0” value does not change the
level of the input signal.
In the .NET interfaces the value equal to On indicates inverting of the input; Off disables
inverting.

5.10.6 InvertGate

C interface unsigned int InvertGate
.NET interface InvertGateState InvertGate
Simulink interface ChronoInvertGate output of the read S-function

SetChronoInvertGate input of the send S-function

DESCRIPTION
The flag that allows to invert the ChxG input. If the flag is active the ChxG signal is inverted at the
input of the chronometer block. If the flag is set and the ChxG signal is 0 the block does not count
reference clock pulses.
In the C and Simulink interfaces the “1” value inverts the signal. The “0” value does not change the
level of the input signal.
In the .NET interfaces the value equal to On indicates to invert the input; Off disables inverting.

5.10.7 ArmMeasurement

C interface unsigned int ArmMeasurement
.NET interface ArmMeasurementState ArmMeasurement
Simulink interface ChronoArmMeasurement output of the read S-function

SetChronoArmMeasurement input of the send S-function

DESCRIPTION
The state of the ArmMeasurement flag. If the block remains in the ReadyToArm state and the flag is
set the state of the block is changed to Armed. In the Armed state the block waits for the start
measurement trigger signal.
In the C and Simulink interfaces the “1” value sets the flag. The “0” value clears the flag.
In the .NET interfaces the value equal to On indicates that the flag is set; Off clears the flag.

5.10.8 NextMeasurement

C interface unsigned int NextMeasurement
.NET interface NextMeasurementState NextMeasurement
Simulink interface ChronoNextMeasurement output of the read S-function

SetChronoNextMeasurement input of the send S-function

DESCRIPTION
The state of the NextMeasurement flag. When a measurement terminates and the NextMeasurement
flag is set the state of the block immediately changes to ReadyToArm. If also the ArmMeasurement
flag is set a new measurement is armed automatically. If both flags: ArmMeasurement and
NextMeasurement are set the measurements are rearmed automatically.
In the C and Simulink interfaces the “1” value sets the flag. The “0” value clears the flag.
In the .NET interfaces the value equal to On indicates that the flag is set; Off clears the flag.

InTeCo

RT-DAC/USB2 - User’s Manual page 55

5.10.9 Armed

C interface unsigned int BlockState_Armed
.NET interface BlockStatusState BlockStatus
Simulink interface ChronoStateArmed output of the read S-function

DESCRIPTION
The flag that indicates that the block remains in the Armed state.
The field is read-only.
In the C and Simulink interfaces the “1” value indicates the Armed state of the block. The “0” value
indicates other states.
In the .NET interfaces the BlockStatus property value equal to Armed indicates the Armed state of
the block.

5.10.10 Pending

C interface unsigned int BlockState_Pending
.NET interface BlockStatusState BlockStatus
Simulink interface ChronoStatePending output of the read S-function

DESCRIPTION
The flag that indicates that the block remains in the Counting state.
The field is read-only.
In the C and Simulink interfaces the “1” value indicates the Counting state of the block. The “0”
value indicates other states.
In the .NET interfaces the BlockStatus property value equal to Counting indicates the Counting
state of the block.

5.10.11 Ready

C interface unsigned int BlockState_Ready
.NET interface BlockStatusState BlockStatus
Simulink interface ChronoStateReady output of the read S-function

DESCRIPTION
The flag that indicates that the block remains in the Counting Terminated state.
The field is read-only.
In the C and Simulink interfaces the “1” value indicates the Counting Terminated state of the block.
The “0” value indicates other states.
In the .NET interfaces the BlockStatus property value equal to CntTerminated indicates the
Counting Terminated state of the block.

5.10.12 ClkDivider

C interface unsigned int ClkDivider
.NET interface uint Divider
Simulink interface ChronoClkDivider output of the read S-function

SetChronoClkDivider input of the send S-function

DESCRIPTION
In the basic mode the block counts the pulses of the reference signal which period is equal to 25ns.
To allow measurements of longer time periods the reference frequency can be divided. The 30-bit
Divider register contains the division factor. The reference frequency is divided by the (Divider + 1)
value (zero Divider value means no division).

InTeCo

RT-DAC/USB2 - User’s Manual page 56

5.10.13 Counter

C interface unsigned int Counter
.NET interface uint Counter

DESCRIPTION
The 32-bit Counter register counts 25ns pulses between the start and stop conditions. The value of
this register changes when the measurement is pending. When the stop condition occurs the value of
the Counter register is stored into the Result register.
The field is read-only.

5.10.14 Result

C interface unsigned int Result
.NET interface uint Result
Simulink interface ChronoResult output of the read S-function

DESCRIPTION
32-bit register. The result of the last measurement cycle. The result is ready-to-read when the Ready
flag is set (see section 5.10.11)
The field is read-only.

InTeCo

RT-DAC/USB2 - User’s Manual page 57

5.10.15 Example

Generate a pulse of the H logical state at the DIO2 output. The DIO2 signal is shared with Ch0StSt. Measure
the duration of the generated pulse at the Ch0 chronometer.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
CommandRead_0103(BoardIdx, &RTDACUSBBuffer);

// Set pin mode as general-purpose for all signals
RTDACUSBBuffer.CN1PinMode = 0;
// Set direction of the Ch0StSt to be output
RTDACUSBBuffer.CN1Direction &= 0x0FFFFFFB;

// Setups of the Ch0
RTDACUSBBuffer.Chrono[0].EnableBlock = 1;
RTDACUSBBuffer.Chrono[0].InvertStartStop = 0;
RTDACUSBBuffer.Chrono[0].InvertStop = 0;
RTDACUSBBuffer.Chrono[0].InvertGate = 0;
RTDACUSBBuffer.Chrono[0].EnableGate = 0;
// Duration of the H state at the Ch0StSt
RTDACUSBBuffer.Chrono[0].TriggerMode = 0;
RTDACUSBBuffer.Chrono[0].ArmMeasurement = 1;
RTDACUSBBuffer.Chrono[0].NextMeasurement = 1;
RTDACUSBBuffer.Chrono[0].ClkDivider = 0; // Maximu m resolution

// Generate the pulse
RTDACUSBBuffer.CN1Output &= 0x0FFFFFFB; // Set DIO 2 to L
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);
RTDACUSBBuffer.CN1Output |= 0x00000004; // Set DIO2 to H
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);
RTDACUSBBuffer.CN1Output &= 0x0FFFFFFB; // Set DIO2 to L
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
printf("Result: %d\n", RTDACUSBBuffer.Chrono[0].Res ult);

USB2Close(BoardIdx);

InTeCo

RT-DAC/USB2 - User’s Manual page 58

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "Enco der example",
 MessageBoxButtons.OK, MessageBoxIc on.Exclamation);
 return;
}
brd.ReadUSBFrame();

// Set pin mode as general-purpose for all signals
brd.DigitalIO.CN1PinMode = 0;
// Set direction of the Ch0StSt to be output
brd.DigitalIO.CN1Direction &= 0x0FFFFFFB;

// Setups of the Ch0
brd.Chrono(0).Enable = ChronoClass.EnableState.On;
brd.Chrono(0).InvertStartStop = ChronoClass.InvertS tartStopState.Off;
brd.Chrono(0).InvertStop = ChronoClass.InvertStopSt ate.Off;
brd.Chrono(0).InvertGate = ChronoClass.InvertGateSt ate.Off;
brd.Chrono(0).EnableGate = ChronoClass.EnableGateSt ate.Off;
brd.Chrono(0).TriggerMode =
 ChronoClass.TriggerModeState.Start Stop_IsH;
brd.Chrono(0).Arm = ChronoClass.ArmState.On;
brd.Chrono(0).Next = ChronoClass.NextState.On;
brd.Chrono(0).Divider = 0; // Maximum resolution

// Generate the pulse
brd.DigitalIO.CN1Output &= 0x0FFFFFFB; // Set DIO2 to L
brd.SendUSBFrame();
brd.DigitalIO.CN1Output |= 0x00000004; // Set DIO2 to H
brd.SendUSBFrame();
brd.DigitalIO.CN1Output &= 0x0FFFFFFB; // Set DIO2 to L
brd.SendUSBFrame();

brd.ReadUSBFrame();
String sAux;
sAux = "Result: " +
 String.Format("{0:D}", brd.Chrono(0).Result) ;
MessageBox.Show(sAux, "Chronometer example",
 MessageBoxButtons.OK);

InTeCo

RT-DAC/USB2 - User’s Manual page 59

5.11 A/D conversion

The RT-DAC/USB2 board is equipped with the 12-bit successive approximation A/D converter that gives the
5 mV resolution within input range ±10V. A finer resolution can be achieved by the gain definition using the
analog amplifier. The A/D conversion time of the RT-DAC/USB2 board is equal to 5.4 µs. The board logic
automatically starts the A/D conversions from all analog inputs when the PC host requires data from the
RT-DAC/USB2 device. There is possible to select individually the analog gain for each analog input channel.

The A/D conversion functions are not active in the digital version of the board.

In the C language interface the features of the frequency meter channels are controlled by the ADType
structure. The main structure of the RTDACUSB2BufferType type contains the array:
 ADType AD[16];
that is applied to communicate with the A/D converters and the gain amplifier.
In the .NET interface the state of A/D conversion channels are described in the ADClass class.

5.11.1 Gain

C interface unsigned int Gain
.NET interface GainState ADGain
Simulink interface ADGain output of the read S-function

SetADGain input of the send S-function

DESCRIPTION
The field defines the gain of the analog inputs. The amplifications of 1, 2, 4, 8 and 16 are available.
In C and Simulink the Gain is a 3-bit number. The values of 0, 1, 2, 3 and 4 define the gains of 1, 2,
4, 8 and 16 respectively.
In the .NET values of x1, x2, x4, x8 and x16 define the gains of 1, 2, 4, 8 and 16.

5.11.2 Result

C interface unsigned int Result
.NET interface GainState ADGain
Simulink interface ADResult output of the read S-function

DESCRIPTION
The A/D conversion result. This field is read-only.

In C and Simulink the result of the A/D conversion given in the form of a 12-bit U2 coded number.
The number stored in Result can be transferred to voltage value following the formula:

if (Result > 2047) Result = Result –4096;
Voltage = (10*Result/2048); // [V]

The calculated voltage has to be multiplied by the number defined as the Gain property.
In .NET the ADResult field gives a voltage value at the analog input.

InTeCo

RT-DAC/USB2 - User’s Manual page 60

5.11.3 Example

Set the gain of the third A/D2 input channel to 1 and read the conversion result.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;
int Result;
double AnalogSignal;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n");
 return;
}

// Set the gain of the third A/D channel to 1
RTDACUSBBuffer.AD[2].Gain = 0;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

CommandRead_0103(BoardIdx, &RTDACUSBBuffer);
Result = RTDACUSBBuffer.AD[2].Result;
printf("Input of the third A/D2 channel: %d\n", Res ult);
if (Result > 2047) Result = Result -4096;
AnalogSignal = (10*Result/2048); // [V]
printf("Input of the A/D2 channel in [V]: %f\n",
 (float)AnalogSignal);

USB2Close(BoardIdx);

InTeCo

RT-DAC/USB2 - User’s Manual page 61

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "Enco der example",
 MessageBoxButtons.OK, MessageBoxIc on.Exclamation);
 return;
}
brd.ReadUSBFrame();

// Set the gain of the third A/D channel to 1
brd.AD(2).ADGain = ADClass.GainState.x1;
brd.SendUSBFrame();

brd.ReadUSBFrame();
String sAux;
sAux = "Input of the third A/D 2 channel: " +
 String.Format("{0:D}", brd.AD(2).ADValue + " \n" +
 "Input of the A/D 2 channel in [V]: " +
 brd.AD(2).ADVoltage.ToString());
MessageBox.Show(sAux, "A/D example", MessageBoxButt ons.OK);

InTeCo

RT-DAC/USB2 - User’s Manual page 62

5.12 D/A conversion

The board contains four 12-bits D/A converter channels connected to the A/O 0, A/O 1, A/O 2 and A/O 3
pins. All channels can be hardware configured to operate in the ±10V mode. Each analog output channel can
sink up to 10 mA.

The D/A conversion functions are not active in the digital version of the board.

In the C language interface the D/A channels are controlled by the array:
 unsigned int DA[4]
In the .NET interface the state of the frequency meter blocks are described in the DAClass class.

5.12.1 D/A control

C interface unsigned int DA[4]
.NET interface uint DAValue
 double DAVoltage
Simulink interface DA output of the read S-function

SetDA input of the send S-function
SetDAterminate input of the send S-function

DESCRIPTION
The field sets a value to the selected D/A channel.

In the C interface the value written to the field is a 14-bit number in the natural binary code and two
least significant bits of the number are neglected. The value of the output signal (Vout) (expressed in
volts) corresponds to the number sent to the D/A converter. The voltage value is calculated by the
formula:

Vout = -10 + 20* DA[*] / 16384; [V].
In the .NET interface the DAValue property corresponds to a binary number applied to control the
D/A converter. The DAVoltage property corresponds to the output voltages,
In Simulink the inputs to the send S-function are in the range –10.0 to +10.0 and correspond to the
output voltages.
In the Simulink send S-functions there are two inputs applied to set the D/A outputs. The first one,
SetDA , is applied during each sampling period. The second input, SetDATerminate , is used
when the simulation terminates to set safe voltages at the analog outputs.

InTeCo

RT-DAC/USB2 - User’s Manual page 63

5.12.2 Example

Set the output of the third A/D channel to 5V and set the output of the fourth A/D channel to –5V.

C language

RTDACUSB2BufferType RTDACUSBBuffer;
int NoOfDetectedUSBDevices;
int BoardIdx;

NoOfDetectedUSBDevices = USB2NumOfDevices();
if(NoOfDetectedUSBDevices < 1) {
 printf ("Can not detect any RT-DAC/USB2 device\n ");
 return;
}
BoardIdx = USB2Open();
if(BoardIdx < 0) {
 printf("Can not open the RT-DAC/USB2 device\n");
 return;
}
if(CommandRead_0103(BoardIdx, &RTDACUSBBuffer) < 0) {
 printf("Can not read the RT-DAC/USB2 device\n") ;
 return;
}

// Set the levels of the D/A2 and D/A3
RTDACUSBBuffer.DA[2] = 0.75*16384;
RTDACUSBBuffer.DA[3] = 0.25*16384;
CommandSend_0103(BoardIdx, &RTDACUSBBuffer);

USB2Close(BoardIdx);

C# language

RTDACUSB2_0103 brd = new RTDACUSB2_0103();
if (brd.Open() < 0)
{
 MessageBox.Show("Can not open the device.", "En coder example",
 MessageBoxButtons.OK, MessageBox Icon.Exclamation);
 return;
}
brd.ReadUSBFrame();

// Set the levels of the D/A2 and D/A3
brd.DA(2).DAValue = (uint)(0.75 * 16384);
brd.DA(3).DAValue = (uint)(0.25 * 16384);
brd.SendUSBFrame();

InTeCo

RT-DAC/USB2 - User’s Manual page 64

6. TEST APPLICATIONS
The software included to the RT-DAC/USB2 board contains eight short programs which allow to test all the
functions of the board.
More than one program can be run simultaneously to perform more advanced tests. For example the outputs
of the PWM waves can be observed by the program used to test digital I/O signals.

There are the following testing programs:

• Digital I/O test,
• Timer / Counter test,
• PWM test,
• Encoder test,
• Frequency Meter test,
• Chronometer test,
• A/D test and
• D/A test.

The usage of these programs is self-explained, simple and fully intuitive. However, a short operating
instruction may be needed. It is assumed that a user is familiarised with the previous sections of this manual
that describe the features of the I/O channels.

6.1 Digital IO test

The screen view of the program is given in Fig. 6.1. Information about the states of all digital input/outputs
lines is placed in the screen. Also one can choose a direction of each line independently marking the
appropriate checkbox.
The Mode column contains buttons which change the mode of the output pins shared between general-
purpose digital outputs and the outputs of the specialised PWM blocks. Only the buttons associated with the
signals shared between the general-purpose I/Os and PWM outputs are active. As it has been described in the
section 5.5 the digital input/output lines named: DIO2/PWM0, DIO5/PWM1, DIO8/PWM2, DIO11/PWM3,
DIO14/PWM4, DIO17/PWM5 DIO20/PWM6 and DIO23/PWM7 are shared with outputs of the PWM
blocks. The radio buttons in the column Output allow to set the state of line if it works as the output. The
column Input (read only) shows the state of the input lines. The column Direction allows to set the direction
of the line.
The list box in the left upper corner of the application allows to select the board if more then one board is
connected to the computer.

Fig. 6.1. The Digital I/O test window

InTeCo

RT-DAC/USB2 - User’s Manual page 65

The analysis of the presented screen will help us to understand the idea of the testing program. In the case
illustrated in the figure all the digital I/O signals except DIO20 and DIO23 are the general-purpose I/Os. The
signals are configured to be the outputs except DIO16-DIO19, DIO21, DIO22, DIO24 and DIO25 which are
the inputs. The outputs from DIO0 to DIO15 are set to high. The remaining outputs are set to low. The states
of DIO20 and DIO23 are controlled by the PWM6 and PWM7 blocks.

Table 5 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 5. Fields of the Digital I/O application.

Element of the test
application window

Description
Section where the field/property is described

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Mode column
Pin mode of the digital I/O signals
Section 5.4

Direction column
Direction of the digital I/O signals
Section 5.5.1

Output column
Output state of the digital I/O signals
Section 5.5.3

Input column
Input states at the digital I/O inputs
Section 5.5.2

6.2 Timer/Counter test

After calling the program the screen shown in Fig. 6.2 appears. The parameters of the timer/counter block
can be selected within the Timer/counter frame. One can select the channel, set state of the Reset signal,
select the operating mode and observe the value of the counter.
The list box at the top of the application allows to select the board if more then one board is connected to the
computer.

Fig. 6.2. The Timer/Counter test window

Table 6 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

InTeCo

RT-DAC/USB2 - User’s Manual page 66

Table 6. Fields of the Timer/Counter application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Reset
Reset state of the selected channel
Section 5.6.2

Mode
Operation mode of the selected channel
Section 5.6.1

Counter
Counter value of the selected channel
Section 5.6.3

6.3 PWM test

The screen of this testing program is shown in Fig. 6.3.
The parameters of the PWM channels are visible within the PWM frame. One can select the channel, mode,
prescaler and width.
The list box at the top of the application allows to select the board if more then one board is connected to the
computer.

Fig. 6.3. The PWM test window

Table 6 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 7. Fields of the PWM application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Mode
8-bit / 12-bit generation mode
Section 5.7.1

InTeCo

RT-DAC/USB2 - User’s Manual page 67

Prescaler
Prescaler of the block (determines the PWM
frequency)
Section 5.7.2

Width
Duration of the H state of the PWM periods
Section 5.7.3

6.4 Encoder test

The screens of this testing program are shown in Fig. 6.4. The windows present states of the ENC4 and
ENC5 channels. The parameters of the encoder channels are given in the Encoder frames.

Fig. 6.4. The Encoder test windows

Table 8 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 8. Fields of the Encoder application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Reset
State of the reset signal
Section 5.8.1

Index active
State of the index active signal
Section 5.8.2

Index invert
State of the index invert signal
Section 5.8.3

Counter
Value of the encoder conter
Section 5.8.4

6.5 Frequency meter test

The application presented in Fig. 6.5 sets the parameters of the frequency meter channels and presents the
results of the frequency measurements.
The duration of the measurement window, given in the Window field, is presented in 25ns units.

InTeCo

RT-DAC/USB2 - User’s Manual page 68

Fig. 6.5. The Frequency meter test window

Table 9 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 9. Fields of the Frequency meter application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Enable block
State of the enable block flag
Section 5.9.1

Mode
State of the mode flag
Section 5.9.10

Software START
State of the software START signal
Section 5.9.3

Infinite measurements
Value of the infinite measurement flag
Section 5.9.9

Invert START
State of the START invert flag
Section 5.9.4

Software GATE
State of the software GATE signal
Section 5.9.5

GATE/START source
State of the GATE/START source flag
Section 5.9.2

Invert GATE
State of the GATE invert signal
Section 5.9.6

Invert INPUT
State of the INPUT invert flag
Section 5.9.7

GATE mode
State of the GATE mode flag
Section 5.9.8

InTeCo

RT-DAC/USB2 - User’s Manual page 69

Window
Value of the measurement window
Section 5.9.11

Ready
State of the measurement ready flag
Section 5.9.12

Result
Result of the measurement
Section 5.9.14

To simplify the channel test the PWM output can be applied to measure the number of pulses within the
measurement window. The output of the PWM0 channel and the inputs signal of the frequency meter channel
0 are located at the same pin. It is pin number 5 of the CN1 connector (see Table 1). Please set the digital I/O
parameters as given in Fig. 6.6. Note that the direction and mode of DIO2 are set to the output and PWM0
respectively.

Fig. 6.6. Parameters of the digital I/O signals

Then set the parameters of the PWM0 channel as given in the Fig. 6.7.

Fig. 6.7. Parameters of the PWM0 output

Finally, set the parameters of the frequency meter channel as shown in Fig. 6.5 and switch the Software
START flag ON and OFF. The last operation starts the continuous measurement of PWM pulses generated
within the measurement window. To change the result value one has to change the frequency of the PWM
wave – it is done by entering a new value in the Prescaler field. As well changing the PWM mode from 8-bit
to 12-bit changes the frequency.

6.6 Chronometer test
The application presented in Fig. 6.8 sets the parameters of the chronometer channels and presents the results
of the measurement. The mode is selected as “STARTSTOP is H” so the block performed a single
measurement of the duration of the H state at the Ch0StSt input.

InTeCo

RT-DAC/USB2 - User’s Manual page 70

Fig. 6.8. The Chronometer test window

The ChxStSt and PWMx signals are located at the same pins of the CN1 connector. It allows to apply the
PWM outputs to test the behaviour of the chronometer blocks. See previous section for more detailed
description of a test scenario.

Table 10 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 10. Fields of the Chronometer application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Enable block
Enable status of the block
Section 5.10.1

Enable GATE
State of the enable GATE signal
Section

Invert STARTSTOP
State of the invert STARTSTOP signal
Section

Invert GATE
State of the invert GATE signal
Section

Arm
State of the arm signal
Section

Measurement mode
Measurement operation mode
Section

Invert STOP
State of the invert STOP signal
Section

Mode
Start/stop mode
Section

Clk divider
Value of the clock divider
Section

Status
Measurement status
Section

InTeCo

RT-DAC/USB2 - User’s Manual page 71

Counter
Value of the counter
Section

Result
Result of the last measurement
Section

6.7 A/D conversion test

The application shown in Fig. 6.9 illustrates the levels of the analog signals at the analog inputs of the board.
The levels are presented as values read from the A/D converters and as voltage values. Also one can set gains
individually for each A/D channel.

Fig. 6.9. The A/D Conversion test window

Table 11 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 11. Fields of the A/D convertion application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

Gain
Gain of the A/D channels
Section 5.11.1

Value and voltage
Bit value and voltage at the A/D inputs
Section 5.11.2

InTeCo

RT-DAC/USB2 - User’s Manual page 72

6.8 D/A conversion test

The screen snapshot of this testing program is shown in Fig. 6.10. Four sliders allow to set the voltage levels
at the D/A outputs. The application presents the values applied to control the D/A converters as well as the
levels of the signals at the analog outputs.

Fig. 6.10. The D/A test window

Table 12 presents the elements of the test application and the numbers of sections where the detailed
description of the fields is given.

Table 12. Fields of the D/A convertion application.

Element of the test
application window

Description
Section where the field/property is described

Status
Status of the last USB operation
Section 5.2.1

Name
Name of the board
Section 5.3.2

Synthesis date
Synthesis date of the FPGA configuration
Section 5.3.3

Logic version
Logic version of the FPGA configuration
Section 5.3.1

D/A outputs
Output of the D/A channels (bit value and voltage)
Section 5.12.1

